# American Institute of Mathematical Sciences

March  2021, 11(1): 211-236. doi: 10.3934/mcrf.2020034

## Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition

 1 B. Verkin Institute for Low Temperature Physics and Engineering, of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine 2 B. Verkin Institute for Low Temperature Physics and Engineering, of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

* Corresponding author: Larissa Fardigola

Received  September 2019 Revised  June 2020 Published  March 2021 Early access  August 2020

In the paper, the problems of controllability and approximate controllability are studied for the control system $w_t = w_{xx}$, $w_x(0,\cdot) = u$, $x>0$, $t\in(0,T)$, where $u\in L^\infty(0,T)$ is a control. It is proved that each initial state of the system is approximately controllable to each target state in a given time $T$. A necessary and sufficient condition for controllability in a given time $T$ is obtained in terms of solvability of a Markov power moment problem. It is also shown that there is no initial state which is null-controllable in a given time $T$. Orthogonal bases are constructed in $H^1$ and $H_1$. Using these bases, numerical solutions to the approximate controllability problem are obtained. The results are illustrated by examples.

Citation: Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034
##### References:
 [1] V. R. Cabanillas, S. B. De Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl., 110 (2001), 245-264.  doi: 10.1023/A:1017515027783. [2] P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var., 10 (2004), 381-408.  doi: 10.1051/cocv:2004010. [3] J. Darde and S. Ervedoza, On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., 56 (2018), 1692-1715.  doi: 10.1137/16M1093215. [4] L. de Teresa and E. Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal., 37 (1999), 1059-1090.  doi: 10.1016/S0362-546X(98)00085-6. [5] V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints, Comput. Optim. Appl., 50 (2011), 75-110.  doi: 10.1007/s10589-009-9310-1. [6] L. V. Fardigola, Transformation Operators and Influence Operators in Control Problems, Dr.Hab. Thesis, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, 2016 (Ukrainian). [7] L. Fardigola and K. Khalina, Reachability and controllability problems for the heat equation on a half-axis, Zh. Mat. Fiz. Anal. Geom., 15 (2019), 57-78.  doi: 10.15407/mag15.01.057. [8] S. G. Gindikin and L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992. [9] L. Gosse and O. Runberg, Resolution of the finite Markov moment problem, Comptes Rendus Mathematiques, 341 (2005), 775-789.  doi: 10.1016/j.crma.2005.10.009. [10] U. W. Hochstrasser, Orthogonal palynomials, in Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, (Eds. M. Abramowitz and I.A. Stegun), National Bureau of Standards, Applied Mathematics Series 55, Washington, DC, 1972, 771–802. [11] T. H. Koornwinder, R. Wong, R. Koekoek and R. F. Swarttouw, Orthogonal Polynomials, in NIST Handbook of Mathematical Functions, (eds. F.W.J. Olver, D.M. Lozier, F.F. Boisvert, and C.W. Clark) Cambridge University Press, 2010. [12] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971. [13] S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.), 58 (2001), 1-24. [14] S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9. [15] A. Munch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European J. Appl. Math., 25 (2014), 277-306.  doi: 10.1017/S0956792514000023. [16] S. S. Sener and M. Subasi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), Article number: 166, Available from: https://doi.org/10.1186/s13661-015-0430-5. doi: 10.1186/s13661-015-0430-5. [17] X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, Ⅳ (2010), 3008–3034. doi: 10.1007/978-0-387-89488-1. [18] E. Zuazua, Some problems and results on the controllability of partial differential equations, in Proceedings of the Second European Congress of Mathematics, Budapest, July 1996, Progress in Mathematics, 169, Birkhäuser Verlag, Basel, 276–311.

show all references

##### References:
 [1] V. R. Cabanillas, S. B. De Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl., 110 (2001), 245-264.  doi: 10.1023/A:1017515027783. [2] P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var., 10 (2004), 381-408.  doi: 10.1051/cocv:2004010. [3] J. Darde and S. Ervedoza, On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., 56 (2018), 1692-1715.  doi: 10.1137/16M1093215. [4] L. de Teresa and E. Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal., 37 (1999), 1059-1090.  doi: 10.1016/S0362-546X(98)00085-6. [5] V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints, Comput. Optim. Appl., 50 (2011), 75-110.  doi: 10.1007/s10589-009-9310-1. [6] L. V. Fardigola, Transformation Operators and Influence Operators in Control Problems, Dr.Hab. Thesis, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, 2016 (Ukrainian). [7] L. Fardigola and K. Khalina, Reachability and controllability problems for the heat equation on a half-axis, Zh. Mat. Fiz. Anal. Geom., 15 (2019), 57-78.  doi: 10.15407/mag15.01.057. [8] S. G. Gindikin and L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992. [9] L. Gosse and O. Runberg, Resolution of the finite Markov moment problem, Comptes Rendus Mathematiques, 341 (2005), 775-789.  doi: 10.1016/j.crma.2005.10.009. [10] U. W. Hochstrasser, Orthogonal palynomials, in Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, (Eds. M. Abramowitz and I.A. Stegun), National Bureau of Standards, Applied Mathematics Series 55, Washington, DC, 1972, 771–802. [11] T. H. Koornwinder, R. Wong, R. Koekoek and R. F. Swarttouw, Orthogonal Polynomials, in NIST Handbook of Mathematical Functions, (eds. F.W.J. Olver, D.M. Lozier, F.F. Boisvert, and C.W. Clark) Cambridge University Press, 2010. [12] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971. [13] S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.), 58 (2001), 1-24. [14] S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9. [15] A. Munch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European J. Appl. Math., 25 (2014), 277-306.  doi: 10.1017/S0956792514000023. [16] S. S. Sener and M. Subasi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), Article number: 166, Available from: https://doi.org/10.1186/s13661-015-0430-5. doi: 10.1186/s13661-015-0430-5. [17] X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, Ⅳ (2010), 3008–3034. doi: 10.1007/978-0-387-89488-1. [18] E. Zuazua, Some problems and results on the controllability of partial differential equations, in Proceedings of the Second European Congress of Mathematics, Budapest, July 1996, Progress in Mathematics, 169, Birkhäuser Verlag, Basel, 276–311.
The functions $u_l^n$
(A)–(D): The controls $u_N$ defined by (70). (E), (F): The influence of these controls on the end state of the solution to (6), (7) with $W^T(x) = \frac{1}{\sqrt\pi} \int_0^T e^{-\frac{x^2}{4\xi}}\frac{2\xi-1}{\sqrt\xi}d\xi$ and $u = u_N$.
(A)–(D): The controls $u_N$ defined by (70). (E), (F): The influence of these controls on the end state of the solution to (6), (7) with $W^T(x) = \frac{1}{\sqrt\pi} \int_0^T e^{-\frac{x^2}{4\xi}}\frac{2(\xi-1)^2-1}{\sqrt\xi}d\xi$ and $u = u_N$.
(A), (B): The controls $u_{N,l}$ defined by (70). (C), (D): The influence of these controls on the end state $W_N^l$ of the solution to (6), (7) with $W^T(x) = \cosh xe^{-\frac{x^2}{2}-\frac{1}{4}}$ and $u = u_{N,l}$.
The estimates for $\left\| W^T-W_N^l\right\|^1$
 $\varepsilon_N^1$ $\varepsilon_{N,l}^2$ $\varepsilon_N^1+\varepsilon_{N,l}^2$ $N=3$, $l=100$ 0.18666 0.12756 0.31422 $N=3$, $l=200$ 0.18666 0.05927 0.24593 $N=4$, $l=150$ 0.01535 0.08648 0.10183 $N=4$, $l=400$ 0.01535 0.03038 0.04573
 $\varepsilon_N^1$ $\varepsilon_{N,l}^2$ $\varepsilon_N^1+\varepsilon_{N,l}^2$ $N=3$, $l=100$ 0.18666 0.12756 0.31422 $N=3$, $l=200$ 0.18666 0.05927 0.24593 $N=4$, $l=150$ 0.01535 0.08648 0.10183 $N=4$, $l=400$ 0.01535 0.03038 0.04573
 [1] Salah-Eddine Chorfi, Ghita El Guermai, Lahcen Maniar, Walid Zouhair. Impulse null approximate controllability for heat equation with dynamic boundary conditions. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022026 [2] Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations and Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373 [3] Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure and Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953 [4] Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143 [5] Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi. Approximate controllability of network systems. Evolution Equations and Control Theory, 2021, 10 (4) : 749-766. doi: 10.3934/eect.2020091 [6] Pengyu Chen, Xuping Zhang. Approximate controllability of nonlocal problem for non-autonomous stochastic evolution equations. Evolution Equations and Control Theory, 2021, 10 (3) : 471-489. doi: 10.3934/eect.2020076 [7] K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 [8] Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1075-1090. doi: 10.3934/dcdsb.2021081 [9] Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745 [10] Hans Weinberger. The approximate controllability of a model for mutant selection. Evolution Equations and Control Theory, 2013, 2 (4) : 741-747. doi: 10.3934/eect.2013.2.741 [11] Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023 [12] Umberto Biccari, Mahamadi Warma, Enrique Zuazua. Controllability of the one-dimensional fractional heat equation under positivity constraints. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1949-1978. doi: 10.3934/cpaa.2020086 [13] Víctor Hernández-Santamaría, Liliana Peralta. Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 161-190. doi: 10.3934/dcdsb.2019177 [14] Piermarco Cannarsa, Alessandro Duca, Cristina Urbani. Exact controllability to eigensolutions of the bilinear heat equation on compact networks. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1377-1401. doi: 10.3934/dcdss.2022011 [15] Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087 [16] Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719 [17] Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations and Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167 [18] Hugo Leiva, Jahnett Uzcategui. Approximate controllability of discrete semilinear systems and applications. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1803-1812. doi: 10.3934/dcdsb.2016023 [19] Hugo Leiva, Nelson Merentes, José L. Sánchez. Approximate controllability of semilinear reaction diffusion equations. Mathematical Control and Related Fields, 2012, 2 (2) : 171-182. doi: 10.3934/mcrf.2012.2.171 [20] Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1015-1043. doi: 10.3934/dcdss.2021147

2021 Impact Factor: 1.141