June  2021, 11(2): 313-328. doi: 10.3934/mcrf.2020038

Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions

Department of Mathematics, Technical University of Munich, Boltzmannstrasse 3, 85748 Garching, Germany

* Corresponding author: Niklas Behringer

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project number 188264188/GRK1754.

Received  March 2020 Revised  July 2020 Published  June 2021 Early access  August 2020

This work is motivated by recent interest in the topic of pointwise tracking type optimal control problems for the Stokes problem. Pointwise tracking consists of point evaluations in the objective functional which lead to Dirac measures appearing as source terms of the adjoint problem. Considering bounds for the control allows for improved regularity results for the exact solution and improved approximation error estimates of its numerical counterpart. We show a sub-optimal convergence result in three dimensions that nonetheless improves the results known from the literature. Finally, we offer supporting numerical experiments and insights towards optimal approximation error estimates.

Citation: Niklas Behringer. Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions. Mathematical Control and Related Fields, 2021, 11 (2) : 313-328. doi: 10.3934/mcrf.2020038
References:
[1]

H. W. Alt, Linear Functional Analysis, An application-oriented introduction, Translated from the German edition by Robert Nürnberg, Universitext, Springer-Verlag London, Ltd., London, 2016. doi: 10.1007/978-1-4471-7280-2.

[2]

H. AntilE. Otárola and A. J. Salgado, Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems, IMA J. Numer. Anal., 38 (2018), 852-883.  doi: 10.1093/imanum/drx018.

[3]

N. Behringer, D. Leykekhman and B. Vexler., Global and local pointwise error estimates for finite element approximations to the stokes problem on convex polyhedra, SIAM J. Numer. Anal., 58(3): 1531–1555, 2020. doi: 10.1137/19M1274456.

[4]

N. BehringerD. Meidner and B. Vexler, Finite element error estimates for optimal control problems with pointwise tracking, Pure Appl. Funct. Anal., 4 (2019), 177-204. 

[5]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, 3rd edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.

[6]

C. BrettA. Dedner and C. Elliott, Optimal control of elliptic PDEs at points, IMA J. Numer. Anal., 36 (2016), 1015-1050.  doi: 10.1093/imanum/drv040.

[7]

R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.

[8]

E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var., 8 (2002), 345-374.  doi: 10.1051/cocv:2002049.

[9]

E. CasasM. Mateos and B. Vexler, New regularity results and improved error estimates for optimal control problems with state constraints, ESAIM Control Optim. Calc. Var., 20 (2014), 803-822.  doi: 10.1051/cocv/2013084.

[10]

L. ChangW. Gong and N. Yan, Numerical analysis for the approximation of optimal control problems with pointwise observations, Math. Methods Appl. Sci., 38 (2015), 4502-4520.  doi: 10.1002/mma.2861.

[11]

M. Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal., 20 (1989), 74-97.  doi: 10.1137/0520006.

[12]

J. C. de los ReyesC. Meyer and B. Vexler, Finite element error analysis for state-constrained optimal control of the Stokes equations, Control Cybernet., 37 (2008), 251-284. 

[13]

R. G. DuránE. Otárola and A. J. Salgado, Stability of the Stokes projection on weighted spaces and applications, Math. Comp., 89 (2020), 1581-1603.  doi: 10.1090/mcom/3509.

[14]

F. Fuica, E. Otárola and D. Quero., Error estimates for optimal control problems involving the stokes system and dirac measures., Applied Mathematics & Optimization, Jun 2020.

[15]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems. 2nd edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.

[16]

, The finite element toolkit GASCOIGNE, http://www.gascoigne.de.

[17]

V. GiraultR. H. Nochetto and L. R. Scott, Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra, Numer. Math., 131 (2015), 771-822.  doi: 10.1007/s00211-015-0707-8.

[18]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, vol. 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[19]

M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.

[20]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, vol. 31 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, Reprint of the 1980 original. doi: 10.1137/1.9780898719451.

[21]

G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/105.

[22]

J.-L. Lions, Contrôle Optimal de Systèmes Gouvernés Par des Équations Aux Dérivées Partielles, Avant propos de P. Lelong, Dunod, Paris; Gauthier-Villars, Paris, 1968.

[23]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, vol. 162 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/162.

[24]

C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, Control Cybernet., 37 (2008), 51-83. 

[25]

RoDoBo. A C++ library for optimization with stationary and nonstationary PDEs with interface to GASCOIGNE [16], http://www.rodobo.org.

[26]

F. Tröltzsch, Optimal Control of Partial Differential Equations, Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels, vol. 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.

[27]

W. P. Ziemer, Weakly Differentiable Functions, Sobolev spaces and functions of bounded variation, vol. 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

H. W. Alt, Linear Functional Analysis, An application-oriented introduction, Translated from the German edition by Robert Nürnberg, Universitext, Springer-Verlag London, Ltd., London, 2016. doi: 10.1007/978-1-4471-7280-2.

[2]

H. AntilE. Otárola and A. J. Salgado, Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems, IMA J. Numer. Anal., 38 (2018), 852-883.  doi: 10.1093/imanum/drx018.

[3]

N. Behringer, D. Leykekhman and B. Vexler., Global and local pointwise error estimates for finite element approximations to the stokes problem on convex polyhedra, SIAM J. Numer. Anal., 58(3): 1531–1555, 2020. doi: 10.1137/19M1274456.

[4]

N. BehringerD. Meidner and B. Vexler, Finite element error estimates for optimal control problems with pointwise tracking, Pure Appl. Funct. Anal., 4 (2019), 177-204. 

[5]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, 3rd edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.

[6]

C. BrettA. Dedner and C. Elliott, Optimal control of elliptic PDEs at points, IMA J. Numer. Anal., 36 (2016), 1015-1050.  doi: 10.1093/imanum/drv040.

[7]

R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.

[8]

E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var., 8 (2002), 345-374.  doi: 10.1051/cocv:2002049.

[9]

E. CasasM. Mateos and B. Vexler, New regularity results and improved error estimates for optimal control problems with state constraints, ESAIM Control Optim. Calc. Var., 20 (2014), 803-822.  doi: 10.1051/cocv/2013084.

[10]

L. ChangW. Gong and N. Yan, Numerical analysis for the approximation of optimal control problems with pointwise observations, Math. Methods Appl. Sci., 38 (2015), 4502-4520.  doi: 10.1002/mma.2861.

[11]

M. Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal., 20 (1989), 74-97.  doi: 10.1137/0520006.

[12]

J. C. de los ReyesC. Meyer and B. Vexler, Finite element error analysis for state-constrained optimal control of the Stokes equations, Control Cybernet., 37 (2008), 251-284. 

[13]

R. G. DuránE. Otárola and A. J. Salgado, Stability of the Stokes projection on weighted spaces and applications, Math. Comp., 89 (2020), 1581-1603.  doi: 10.1090/mcom/3509.

[14]

F. Fuica, E. Otárola and D. Quero., Error estimates for optimal control problems involving the stokes system and dirac measures., Applied Mathematics & Optimization, Jun 2020.

[15]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems. 2nd edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.

[16]

, The finite element toolkit GASCOIGNE, http://www.gascoigne.de.

[17]

V. GiraultR. H. Nochetto and L. R. Scott, Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra, Numer. Math., 131 (2015), 771-822.  doi: 10.1007/s00211-015-0707-8.

[18]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, vol. 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[19]

M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.

[20]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, vol. 31 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, Reprint of the 1980 original. doi: 10.1137/1.9780898719451.

[21]

G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/105.

[22]

J.-L. Lions, Contrôle Optimal de Systèmes Gouvernés Par des Équations Aux Dérivées Partielles, Avant propos de P. Lelong, Dunod, Paris; Gauthier-Villars, Paris, 1968.

[23]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, vol. 162 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/162.

[24]

C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, Control Cybernet., 37 (2008), 51-83. 

[25]

RoDoBo. A C++ library for optimization with stationary and nonstationary PDEs with interface to GASCOIGNE [16], http://www.rodobo.org.

[26]

F. Tröltzsch, Optimal Control of Partial Differential Equations, Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels, vol. 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.

[27]

W. P. Ziemer, Weakly Differentiable Functions, Sobolev spaces and functions of bounded variation, vol. 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

Figure 1.  Threshold visualization of the first component of a solution $ \vec{q}_h $ to Problem (16)
Figure 2.  Error $ ||\bar q_{n}-\bar q_h||_{L^2(\Omega)} $ for cellwise constant control discretization and different choices for the bounds $ \vec a $ and $ \vec b $. $ \bar q_{n} $ denotes the approximate solution on a finer mesh
[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control and Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[2]

Zhen-Zhen Tao, Bing Sun. Error estimates for spectral approximation of flow optimal control problem with $ L^2 $-norm control constraint. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022030

[3]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[4]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[5]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[6]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[7]

JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305

[8]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[9]

Mohamed Aliane, Mohand Bentobache, Nacima Moussouni, Philippe Marthon. Direct method to solve linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 645-663. doi: 10.3934/naco.2021002

[10]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[11]

Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547

[12]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control and Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[13]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[14]

Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117

[15]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[16]

Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034

[17]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial and Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[18]

Konstantinos Chrysafinos. Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1077-1096. doi: 10.3934/dcdsb.2006.6.1077

[19]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control and Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[20]

Quyen Tran, Harbir Antil, Hugo Díaz. Optimal control of parameterized stationary Maxwell's system: Reduced basis, convergence analysis, and a posteriori error estimates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022003

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (245)
  • HTML views (266)
  • Cited by (0)

Other articles
by authors

[Back to Top]