• Previous Article
    General stability of abstract thermoelastic system with infinite memory and delay
  • MCRF Home
  • This Issue
  • Next Article
    Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions
June  2021, 11(2): 329-351. doi: 10.3934/mcrf.2020039

On switching properties of time optimal controls for linear ODEs

1. 

School of Science, Tianjin University of Commerce, Tianjin, 300134, China

2. 

Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China

3. 

School of Mathematics, Tianjin University, Tianjin, 300354, China

* Corresponding author: Huaiqiang Yu

Received  November 2019 Revised  June 2020 Published  June 2021 Early access  October 2020

Fund Project: This work was partially supported by the NNSF of China under grants 11601377, 11901432, 11971022

In this paper, we present some properties of time optimal controls for linear ODEs with the ball-type control constraint. More precisely, given an optimal control, we build up an upper bound for the number of its switching points; show that it jumps from one direction to the reverse direction at each switching point; give its dynamic behaviour between two consecutive switching points; and study its switching directions.

Citation: Shulin Qin, Gengsheng Wang, Huaiqiang Yu. On switching properties of time optimal controls for linear ODEs. Mathematical Control & Related Fields, 2021, 11 (2) : 329-351. doi: 10.3934/mcrf.2020039
References:
[1]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem with control in a ball, SIAM J. Control Optim., 56 (2018), 183-120.  doi: 10.1137/16M110304X.  Google Scholar

[2]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem: The 3D Case with 2D control, J. Dyn. Control Syst., 23 (2017), 577-595.  doi: 10.1007/s10883-016-9342-7.  Google Scholar

[3]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[4]

R. BellmanI. Glicksberg and O. Gross, On the "bang-bang" control problem, Quart. Appl. Math., 14 (1956), 11-18.  doi: 10.1090/qam/78516.  Google Scholar

[5]

C. Biolo, Switching in Time-Optimal Problem, Ph.D thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, 2017. Google Scholar

[6]

C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer Series in Information Sciences, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61312-8.  Google Scholar

[7]

R. Conti, Teoia del Controllo e del Controllo Ottimo, UTET, Torino, Italy, 1974. Google Scholar

[8]

L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Lecture Notes, Univerisity of California, Berkeley, 2005. Google Scholar

[9]

H. O. Fattorini, Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems, North-Holland Mathematics Studies, 201, Elsevier Science B.V., Amsterdam, 2005.  Google Scholar

[10]

H. O. Fattorini, Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2203-2218.  doi: 10.1016/S0252-9602(11)60394-9.  Google Scholar

[11]

J. P. LaSalle, Time optimal control systems, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 573-577.  doi: 10.1073/pnas.45.4.573.  Google Scholar

[12]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.  doi: 10.1137/090764232.  Google Scholar

[13]

L. Poggiolini, Structural stability of bang-bang trajectories with a double switching time in the minimum time problem, SIAM J. Control Optim., 55 (2017), 3779-3798.  doi: 10.1137/16M1083761.  Google Scholar

[14]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London 1962.  Google Scholar

[15]

S. Qin and G. Wang, Controllability of impulse controlled systems of heat equations coupled by constant matrices, J. Differential Equations, 263 (2017), 6456-6493.  doi: 10.1016/j.jde.2017.07.018.  Google Scholar

[16]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[17]

H. J. Sussmann, A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), 629-651.  doi: 10.1137/0317045.  Google Scholar

[18]

G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations, Progress in Nonlinear Differential Equations and Their Applications, Subseries in Control, 92, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-95363-2.  Google Scholar

[19]

G. Wang and Y. Zhang, Decompositions and bang-bang properties, Math. Control Relat. Fields, 7 (2017), 73-170.  doi: 10.3934/mcrf.2017005.  Google Scholar

show all references

References:
[1]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem with control in a ball, SIAM J. Control Optim., 56 (2018), 183-120.  doi: 10.1137/16M110304X.  Google Scholar

[2]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem: The 3D Case with 2D control, J. Dyn. Control Syst., 23 (2017), 577-595.  doi: 10.1007/s10883-016-9342-7.  Google Scholar

[3]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[4]

R. BellmanI. Glicksberg and O. Gross, On the "bang-bang" control problem, Quart. Appl. Math., 14 (1956), 11-18.  doi: 10.1090/qam/78516.  Google Scholar

[5]

C. Biolo, Switching in Time-Optimal Problem, Ph.D thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, 2017. Google Scholar

[6]

C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer Series in Information Sciences, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61312-8.  Google Scholar

[7]

R. Conti, Teoia del Controllo e del Controllo Ottimo, UTET, Torino, Italy, 1974. Google Scholar

[8]

L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Lecture Notes, Univerisity of California, Berkeley, 2005. Google Scholar

[9]

H. O. Fattorini, Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems, North-Holland Mathematics Studies, 201, Elsevier Science B.V., Amsterdam, 2005.  Google Scholar

[10]

H. O. Fattorini, Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2203-2218.  doi: 10.1016/S0252-9602(11)60394-9.  Google Scholar

[11]

J. P. LaSalle, Time optimal control systems, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 573-577.  doi: 10.1073/pnas.45.4.573.  Google Scholar

[12]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.  doi: 10.1137/090764232.  Google Scholar

[13]

L. Poggiolini, Structural stability of bang-bang trajectories with a double switching time in the minimum time problem, SIAM J. Control Optim., 55 (2017), 3779-3798.  doi: 10.1137/16M1083761.  Google Scholar

[14]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London 1962.  Google Scholar

[15]

S. Qin and G. Wang, Controllability of impulse controlled systems of heat equations coupled by constant matrices, J. Differential Equations, 263 (2017), 6456-6493.  doi: 10.1016/j.jde.2017.07.018.  Google Scholar

[16]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[17]

H. J. Sussmann, A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), 629-651.  doi: 10.1137/0317045.  Google Scholar

[18]

G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations, Progress in Nonlinear Differential Equations and Their Applications, Subseries in Control, 92, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-95363-2.  Google Scholar

[19]

G. Wang and Y. Zhang, Decompositions and bang-bang properties, Math. Control Relat. Fields, 7 (2017), 73-170.  doi: 10.3934/mcrf.2017005.  Google Scholar

[1]

Zhen Wu, Feng Zhang. Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021031

[2]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[3]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[4]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[5]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[6]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[7]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[8]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[9]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control & Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[10]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[11]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[12]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[13]

Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443

[14]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[15]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[16]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[17]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[18]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[19]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[20]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (166)
  • HTML views (182)
  • Cited by (0)

Other articles
by authors

[Back to Top]