June  2021, 11(2): 353-371. doi: 10.3934/mcrf.2020040

General stability of abstract thermoelastic system with infinite memory and delay

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, China

Corresponding author: Jianghao Hao

Received  January 2020 Revised  July 2020 Published  June 2021 Early access  October 2020

Fund Project: This research was partially supported by Natural Science Foundation of China (grant number 11871315, 61374089), Natural Science Foundation of Shanxi Province of China (grant number 201801D121003, 201901D111021)

In this paper we study an abstract thermoelastic system in Hilbert space with infinite memory and time delay. Under some suitable conditions, we prove the well-posedness by invoking semigroup theory. Since the damping may stabilize the system while the delay may destabilize it, we discuss the interaction between the damping and the delay term, and obtain that the system is uniformly stable when the effect of damping is greater than that of time delay. By establishing suitable Lyapunov functionals which are equivalent to the energy of system we also establish the general energy decay results for abstract thermoelastic system.

Citation: Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control & Related Fields, 2021, 11 (2) : 353-371. doi: 10.3934/mcrf.2020040
References:
[1]

M. Afilal and A. Soufyane, General decay for a porous thermoelastic system with a memory, Appl. Anal., 98 (2019), 638-650.  doi: 10.1080/00036811.2017.1399363.  Google Scholar

[2]

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 867-872.  doi: 10.1016/j.crma.2009.05.011.  Google Scholar

[3]

F. Alabau-Boussouira, S. Nicaise and C. Pignotti, Exponential stability of the wave equation with memory and time delay, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer INdAM Ser., 10, Springer, Cham, 2014, 1–22. doi: 10.1007/978-3-319-11406-4_1.  Google Scholar

[4]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[5]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Anal., 64 (2006), 92-108.  doi: 10.1016/j.na.2005.06.010.  Google Scholar

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[7]

E. FridmanS. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay, SIAM J. Control Optim., 48 (2010), 5028-5052.  doi: 10.1137/090762105.  Google Scholar

[8]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[9]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.  doi: 10.1093/imamci/dns039.  Google Scholar

[10]

A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.  Google Scholar

[11]

J. Hao and P. Wang, General stability result of abstract thermoelastic system with infinite memory, Bull. Malays. Math. Sci. Soc., 42 (2019), 2549-2567.  doi: 10.1007/s40840-018-0615-z.  Google Scholar

[12]

K.-P. JinJ. Liang and T.-J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554-575.  doi: 10.1016/j.jmaa.2019.02.055.  Google Scholar

[13]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.  Google Scholar

[14]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[15]

I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 18pp. doi: 10.1063/1.4793988.  Google Scholar

[16]

M. J. LeeJ. Y. Park and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl., 70 (2015), 478-487.  doi: 10.1016/j.camwa.2015.05.004.  Google Scholar

[17]

S. Mesloub and F. Mesloub, On a coupled nonlinear singular thermoelastic system, Nonlinear Anal., 73 (2010), 3195-3208.  doi: 10.1016/j.na.2010.06.082.  Google Scholar

[18]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.  Google Scholar

[19]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691-707.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[20]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[21]

J. E. Muñoz Rivera and M. G. Naso, Optimal energy decay rate for a class of weakly dissipative second-order systems with memory, Appl. Math. Lett., 23 (2010), 743-746.  doi: 10.1016/j.aml.2010.02.016.  Google Scholar

[22]

M. I. Mustafa, Asymptotic behavior of second sound thermoelasticity with internal time-varying delay, Z. Angew. Math. Phys., 64 (2013), 1353-1362.  doi: 10.1007/s00033-012-0268-y.  Google Scholar

[23]

S. Nicaise and C. Pignotti, Asymptotic stability of second-order evolution equations with intermittent delay, Adv. Differential Equations, 17 (2012), 879-902.   Google Scholar

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

C. Pignotti, Stability results for second-order evolution equations with memory and switching time-delay, J. Dynam. Differential Equations, 29 (2017), 1309-1324.  doi: 10.1007/s10884-016-9545-3.  Google Scholar

[27]

A. G. Ramm, Stability of solutions to abstract evolution equations with delay, J. Math. Anal. Appl., 396 (2012), 523-527.  doi: 10.1016/j.jmaa.2012.06.033.  Google Scholar

[28]

Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727-745.  doi: 10.1007/s00033-014-0429-2.  Google Scholar

[29]

A. Youkana, Stability of an abstract system with infinite history, preprint, arXiv: 1805.07964. Google Scholar

show all references

References:
[1]

M. Afilal and A. Soufyane, General decay for a porous thermoelastic system with a memory, Appl. Anal., 98 (2019), 638-650.  doi: 10.1080/00036811.2017.1399363.  Google Scholar

[2]

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 867-872.  doi: 10.1016/j.crma.2009.05.011.  Google Scholar

[3]

F. Alabau-Boussouira, S. Nicaise and C. Pignotti, Exponential stability of the wave equation with memory and time delay, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer INdAM Ser., 10, Springer, Cham, 2014, 1–22. doi: 10.1007/978-3-319-11406-4_1.  Google Scholar

[4]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[5]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Anal., 64 (2006), 92-108.  doi: 10.1016/j.na.2005.06.010.  Google Scholar

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[7]

E. FridmanS. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay, SIAM J. Control Optim., 48 (2010), 5028-5052.  doi: 10.1137/090762105.  Google Scholar

[8]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[9]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.  doi: 10.1093/imamci/dns039.  Google Scholar

[10]

A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.  Google Scholar

[11]

J. Hao and P. Wang, General stability result of abstract thermoelastic system with infinite memory, Bull. Malays. Math. Sci. Soc., 42 (2019), 2549-2567.  doi: 10.1007/s40840-018-0615-z.  Google Scholar

[12]

K.-P. JinJ. Liang and T.-J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554-575.  doi: 10.1016/j.jmaa.2019.02.055.  Google Scholar

[13]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.  Google Scholar

[14]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[15]

I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 18pp. doi: 10.1063/1.4793988.  Google Scholar

[16]

M. J. LeeJ. Y. Park and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl., 70 (2015), 478-487.  doi: 10.1016/j.camwa.2015.05.004.  Google Scholar

[17]

S. Mesloub and F. Mesloub, On a coupled nonlinear singular thermoelastic system, Nonlinear Anal., 73 (2010), 3195-3208.  doi: 10.1016/j.na.2010.06.082.  Google Scholar

[18]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.  Google Scholar

[19]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691-707.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[20]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[21]

J. E. Muñoz Rivera and M. G. Naso, Optimal energy decay rate for a class of weakly dissipative second-order systems with memory, Appl. Math. Lett., 23 (2010), 743-746.  doi: 10.1016/j.aml.2010.02.016.  Google Scholar

[22]

M. I. Mustafa, Asymptotic behavior of second sound thermoelasticity with internal time-varying delay, Z. Angew. Math. Phys., 64 (2013), 1353-1362.  doi: 10.1007/s00033-012-0268-y.  Google Scholar

[23]

S. Nicaise and C. Pignotti, Asymptotic stability of second-order evolution equations with intermittent delay, Adv. Differential Equations, 17 (2012), 879-902.   Google Scholar

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

C. Pignotti, Stability results for second-order evolution equations with memory and switching time-delay, J. Dynam. Differential Equations, 29 (2017), 1309-1324.  doi: 10.1007/s10884-016-9545-3.  Google Scholar

[27]

A. G. Ramm, Stability of solutions to abstract evolution equations with delay, J. Math. Anal. Appl., 396 (2012), 523-527.  doi: 10.1016/j.jmaa.2012.06.033.  Google Scholar

[28]

Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727-745.  doi: 10.1007/s00033-014-0429-2.  Google Scholar

[29]

A. Youkana, Stability of an abstract system with infinite history, preprint, arXiv: 1805.07964. Google Scholar

[1]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[2]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[3]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[4]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[5]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057

[6]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[7]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109

[8]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[9]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[10]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[11]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[12]

Manas Bhatnagar, Hailiang Liu. Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5271-5289. doi: 10.3934/dcds.2021076

[13]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[14]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[15]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure & Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[16]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[17]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[18]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[20]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (142)
  • HTML views (177)
  • Cited by (0)

Other articles
by authors

[Back to Top]