- Previous Article
- MCRF Home
- This Issue
-
Next Article
Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds
Extended backward stochastic Volterra integral equations and their applications to time-Inconsistent stochastic recursive control problems
Department of Mathematics, Kyoto University, Kyoto 606–8502, Japan |
In this paper, we study extended backward stochastic Volterra integral equations (EBSVIEs, for short). We establish the well-posedness under weaker assumptions than the literature, and prove a new kind of regularity property for the solutions. As an application, we investigate, in the open-loop framework, a time-inconsistent stochastic recursive control problem where the cost functional is defined by the solution to a backward stochastic Volterra integral equation (BSVIE, for short). We show that the corresponding adjoint equations become EBSVIEs, and provide a necessary and sufficient condition for an open-loop equilibrium control via variational methods.
References:
[1] |
I. Alia,
A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Math. Control Relat. Fields, 9 (2019), 541-570.
doi: 10.3934/mcrf.2019025. |
[2] |
I. Alia, F. Chighoub, N. Khelfallah and J. Vives, Time-consistent investment and consumption strategies under a general discount function, preprint, 2020, arXiv: 1705.10602. |
[3] |
T. Björk, M. Khapko and A. Murgoci,
On time-inconsistent stochastic control in continuous time, Finance Stoch., 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5. |
[4] |
B. Djehiche and M. Huang,
A characterization of sub-game perfect equilibria for SDEs of mean-field type, Dyn. Games Appl., 6 (2016), 55-81.
doi: 10.1007/s13235-015-0140-8. |
[5] |
I. Ekeland and T. A. Pirvu,
Investment and consumption without commitment, Math. Financ. Econ., 2 (2008), 57-86.
doi: 10.1007/s11579-008-0014-6. |
[6] |
N. El Karoui, S. Peng and M. C. Quenez,
Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022. |
[7] |
Y. Hamaguchi, Small-time solvability of a flow of forward-backward stochastic differential equations, Appl. Math. Optim., 2020.
doi: 10.1007/s00245-020-09654-7. |
[8] |
Y. Hamaguchi, Time-inconsistent consumption-investment problems in incomplete markets under general discount functions, preprint, 2020, arXiv: 1912.01281. |
[9] |
C. Hernández and D. Possamaï, A unified approach to well-posedness of Type-Ⅰ backward stochastic Volterra integral equations, preprint, 2020, arXiv: 2007.12258. |
[10] |
E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, AMS, Providence, RI, 1957. |
[11] |
M. Hu,
Stochastic global maximum principle for optimization with recursive utilities, Probab. Uncertain. Quant. Risk, 2 (2017), 1-20.
doi: 10.1186/s41546-017-0014-7. |
[12] |
Y. Hu, J. Huang and X. Li, Equilibrium for time-inconsistent stochastic linear-quadratic control under constraint, preprint, 2020, arXiv: 1703.09415.
doi: 10.1137/15M1019040. |
[13] |
Y. Hu, H. Jin and X. Y. Zhou,
Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548-1572.
doi: 10.1137/110853960. |
[14] |
Y. Hu, H. Jin and X. Y. Zhou,
Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM J. Control Optim., 55 (2017), 1261-1279.
doi: 10.1137/15M1019040. |
[15] |
J. Lin,
Adapted solutions of a backward stochastic nonlinear Volterra integral equation, Stoch. Anal. Appl., 20 (2002), 165-183.
doi: 10.1081/SAP-120002426. |
[16] |
S. Peng,
A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979.
doi: 10.1137/0328054. |
[17] |
Y. Shi and T. Wang,
Solvability of general backward stochastic Volterra integral equations, J. Korean Math. Soc., 49 (2012), 1301-1321.
doi: 10.4134/JKMS.2012.49.6.1301. |
[18] |
Y. Shi, T. Wang and J. Yong,
Optimal control problems of forward-backward stochastic Volterra integral equations, Math. Control Relat. Fields, 5 (2015), 613-649.
doi: 10.3934/mcrf.2015.5.613. |
[19] |
Y. Shi, J. Wen and J. Xiong,
Backward doubly stochastic Volterra integral equations and their applications, J. Differential Equations, 269 (2020), 6492-6528.
doi: 10.1016/j.jde.2020.05.006. |
[20] |
R. Strotz,
Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, 23 (1973), 128-143.
|
[21] |
H. Wang, Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman–Kac formula, Stoch. Dyn., 2020.
doi: 10.1142/S0219493721500040. |
[22] |
H. Wang, J. Sun and J. Yong, Recursive utility processes, dynamic risk measures and quadratic backward stochastic Volterra integral equations, Appl. Math. Optim., 2019. |
[23] |
H. Wang and J. Yong, Time-inconsistent stochastic optimal control problems and backward stochastic Volterra integral equations, preprint, 2019, arXiv: 1911.04995. |
[24] |
T. Wang,
Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I, Math. Control Relat. Fields, 9 (2019), 385-409.
doi: 10.3934/mcrf.2019018. |
[25] |
T. Wang,
Equilibrium controls in time inconsistent stochastic linear quadratic problems, Appl. Math. Optim., 81 (2020), 591-619.
doi: 10.1007/s00245-018-9513-x. |
[26] |
T. Wang and J. Yong,
Backward stochastic Volterra integral equations–representation of adapted solutions, Stochastic Process. Appl., 129 (2019), 4926-4964.
doi: 10.1016/j.spa.2018.12.016. |
[27] |
T. Wang and H. Zhang,
Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions, SIAM J. Control Optim., 55 (2017), 2574-2602.
doi: 10.1137/16M1059801. |
[28] |
Q. Wei, J. Yong and Z. Yu,
Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2017), 4156-4201.
doi: 10.1137/16M1079415. |
[29] |
W. Yan and J. Yong, Time-inconsistent optimal control problems and related issues, in Modeling, Stochastic Control, Optimization, and Applications, IMA Vol. Math. Appl., Springer, Cham, 2019,533–569.
doi: 10.1007/978-3-030-25498-8_22. |
[30] |
J. Yong,
Backward stochastic Volterra integral equations and some related problems, Stochastic Process. Appl., 116 (2006), 779-795.
doi: 10.1016/j.spa.2006.01.005. |
[31] |
J. Yong,
Continuous-time dynamic risk measures by backward stochastic Volterra integral equations, Appl. Anal., 86 (2007), 1429-1442.
doi: 10.1080/00036810701697328. |
[32] |
J. Yong,
Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory Related Fields, 142 (2008), 21-77.
doi: 10.1007/s00440-007-0098-6. |
[33] |
J. Yong,
Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Relat. Fields, 2 (2012), 271-329.
doi: 10.3934/mcrf.2012.2.271. |
[34] |
J. Yong,
Linear-quadratic optimal control problems for mean-field stochastic differential equations–time-consistent solutions, Trans. Amer. Math. Soc., 369 (2017), 5467-5523.
doi: 10.1090/tran/6502. |
[35] |
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
[36] |
J. Zhang, Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory, Springer, New York, 2017.
doi: 10.1007/978-1-4939-7256-2. |
show all references
References:
[1] |
I. Alia,
A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Math. Control Relat. Fields, 9 (2019), 541-570.
doi: 10.3934/mcrf.2019025. |
[2] |
I. Alia, F. Chighoub, N. Khelfallah and J. Vives, Time-consistent investment and consumption strategies under a general discount function, preprint, 2020, arXiv: 1705.10602. |
[3] |
T. Björk, M. Khapko and A. Murgoci,
On time-inconsistent stochastic control in continuous time, Finance Stoch., 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5. |
[4] |
B. Djehiche and M. Huang,
A characterization of sub-game perfect equilibria for SDEs of mean-field type, Dyn. Games Appl., 6 (2016), 55-81.
doi: 10.1007/s13235-015-0140-8. |
[5] |
I. Ekeland and T. A. Pirvu,
Investment and consumption without commitment, Math. Financ. Econ., 2 (2008), 57-86.
doi: 10.1007/s11579-008-0014-6. |
[6] |
N. El Karoui, S. Peng and M. C. Quenez,
Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022. |
[7] |
Y. Hamaguchi, Small-time solvability of a flow of forward-backward stochastic differential equations, Appl. Math. Optim., 2020.
doi: 10.1007/s00245-020-09654-7. |
[8] |
Y. Hamaguchi, Time-inconsistent consumption-investment problems in incomplete markets under general discount functions, preprint, 2020, arXiv: 1912.01281. |
[9] |
C. Hernández and D. Possamaï, A unified approach to well-posedness of Type-Ⅰ backward stochastic Volterra integral equations, preprint, 2020, arXiv: 2007.12258. |
[10] |
E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, AMS, Providence, RI, 1957. |
[11] |
M. Hu,
Stochastic global maximum principle for optimization with recursive utilities, Probab. Uncertain. Quant. Risk, 2 (2017), 1-20.
doi: 10.1186/s41546-017-0014-7. |
[12] |
Y. Hu, J. Huang and X. Li, Equilibrium for time-inconsistent stochastic linear-quadratic control under constraint, preprint, 2020, arXiv: 1703.09415.
doi: 10.1137/15M1019040. |
[13] |
Y. Hu, H. Jin and X. Y. Zhou,
Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548-1572.
doi: 10.1137/110853960. |
[14] |
Y. Hu, H. Jin and X. Y. Zhou,
Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM J. Control Optim., 55 (2017), 1261-1279.
doi: 10.1137/15M1019040. |
[15] |
J. Lin,
Adapted solutions of a backward stochastic nonlinear Volterra integral equation, Stoch. Anal. Appl., 20 (2002), 165-183.
doi: 10.1081/SAP-120002426. |
[16] |
S. Peng,
A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979.
doi: 10.1137/0328054. |
[17] |
Y. Shi and T. Wang,
Solvability of general backward stochastic Volterra integral equations, J. Korean Math. Soc., 49 (2012), 1301-1321.
doi: 10.4134/JKMS.2012.49.6.1301. |
[18] |
Y. Shi, T. Wang and J. Yong,
Optimal control problems of forward-backward stochastic Volterra integral equations, Math. Control Relat. Fields, 5 (2015), 613-649.
doi: 10.3934/mcrf.2015.5.613. |
[19] |
Y. Shi, J. Wen and J. Xiong,
Backward doubly stochastic Volterra integral equations and their applications, J. Differential Equations, 269 (2020), 6492-6528.
doi: 10.1016/j.jde.2020.05.006. |
[20] |
R. Strotz,
Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, 23 (1973), 128-143.
|
[21] |
H. Wang, Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman–Kac formula, Stoch. Dyn., 2020.
doi: 10.1142/S0219493721500040. |
[22] |
H. Wang, J. Sun and J. Yong, Recursive utility processes, dynamic risk measures and quadratic backward stochastic Volterra integral equations, Appl. Math. Optim., 2019. |
[23] |
H. Wang and J. Yong, Time-inconsistent stochastic optimal control problems and backward stochastic Volterra integral equations, preprint, 2019, arXiv: 1911.04995. |
[24] |
T. Wang,
Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I, Math. Control Relat. Fields, 9 (2019), 385-409.
doi: 10.3934/mcrf.2019018. |
[25] |
T. Wang,
Equilibrium controls in time inconsistent stochastic linear quadratic problems, Appl. Math. Optim., 81 (2020), 591-619.
doi: 10.1007/s00245-018-9513-x. |
[26] |
T. Wang and J. Yong,
Backward stochastic Volterra integral equations–representation of adapted solutions, Stochastic Process. Appl., 129 (2019), 4926-4964.
doi: 10.1016/j.spa.2018.12.016. |
[27] |
T. Wang and H. Zhang,
Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions, SIAM J. Control Optim., 55 (2017), 2574-2602.
doi: 10.1137/16M1059801. |
[28] |
Q. Wei, J. Yong and Z. Yu,
Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2017), 4156-4201.
doi: 10.1137/16M1079415. |
[29] |
W. Yan and J. Yong, Time-inconsistent optimal control problems and related issues, in Modeling, Stochastic Control, Optimization, and Applications, IMA Vol. Math. Appl., Springer, Cham, 2019,533–569.
doi: 10.1007/978-3-030-25498-8_22. |
[30] |
J. Yong,
Backward stochastic Volterra integral equations and some related problems, Stochastic Process. Appl., 116 (2006), 779-795.
doi: 10.1016/j.spa.2006.01.005. |
[31] |
J. Yong,
Continuous-time dynamic risk measures by backward stochastic Volterra integral equations, Appl. Anal., 86 (2007), 1429-1442.
doi: 10.1080/00036810701697328. |
[32] |
J. Yong,
Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory Related Fields, 142 (2008), 21-77.
doi: 10.1007/s00440-007-0098-6. |
[33] |
J. Yong,
Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Relat. Fields, 2 (2012), 271-329.
doi: 10.3934/mcrf.2012.2.271. |
[34] |
J. Yong,
Linear-quadratic optimal control problems for mean-field stochastic differential equations–time-consistent solutions, Trans. Amer. Math. Soc., 369 (2017), 5467-5523.
doi: 10.1090/tran/6502. |
[35] |
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
[36] |
J. Zhang, Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory, Springer, New York, 2017.
doi: 10.1007/978-1-4939-7256-2. |
[1] |
Ishak Alia. Open-loop equilibriums for a general class of time-inconsistent stochastic optimal control problems. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021053 |
[2] |
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613 |
[3] |
Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control and Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651 |
[4] |
Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020 |
[5] |
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929 |
[6] |
Tianxiao Wang, Yufeng Shi. Symmetrical solutions of backward stochastic Volterra integral equations and their applications. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 251-274. doi: 10.3934/dcdsb.2010.14.251 |
[7] |
Ludger Overbeck, Jasmin A. L. Röder. Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 4-. doi: 10.1186/s41546-018-0030-2 |
[8] |
Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control and Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271 |
[9] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432 |
[10] |
Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045 |
[11] |
Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control and Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025 |
[12] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[13] |
Jingtao Shi, Juanjuan Xu, Huanshui Zhang. Stochastic recursive optimal control problem with time delay and applications. Mathematical Control and Related Fields, 2015, 5 (4) : 859-888. doi: 10.3934/mcrf.2015.5.859 |
[14] |
Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control and Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83 |
[15] |
Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003 |
[16] |
Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control and Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191 |
[17] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[18] |
Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087 |
[19] |
Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011 |
[20] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]