doi: 10.3934/mcrf.2020045
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

First order necessary conditions of optimality for the two dimensional tidal dynamics system

Department of Mathematics, Indian Institute of Technology Roorkee-IIT Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India

*Corresponding author

Received  September 2019 Revised  August 2020 Early access November 2020

Fund Project: M. T. Mohan is supported by INSPIRE Faculty Award-IFA17-MA110

In this work, we consider the two dimensional tidal dynamics equations in a bounded domain and address some optimal control problems like total energy minimization, minimization of dissipation of energy of the flow, etc. We also examine an another interesting control problem which is similar to that of the data assimilation problems in meteorology of obtaining unknown initial data, when the system under consideration is the tidal dynamics, using optimal control techniques. For these cases, different distributed optimal control problems are formulated as the minimization of suitable cost functionals subject to the controlled two dimensional tidal dynamics system. The existence of an optimal control as well as the first order necessary conditions of optimality for such systems are established and the optimal control is characterized via the adjoint variable. We also establish the uniqueness of optimal control in small time interval.

Citation: Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020045
References:
[1]

F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, 1 (1990), 303-325.  doi: 10.1007/BF00271794.  Google Scholar

[2]

P. AgarwalU. Manna and D. Mukherjee, Stochastic control of tidal dynamics equation with Lévy noise, Appl. Math. Optim., 79 (2019), 327-396.  doi: 10.1007/s00245-017-9440-2.  Google Scholar

[3]

V. I. Agoshkov and E. A. Botvinovsky, Numerical solution of a hyperbolic-parabolic system by splitting methods and optimal control approaches, Comput. Methods Appl. Math., 7 (2007), 193-207.  doi: 10.2478/cmam-2007-0011.  Google Scholar

[4]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, vol. 190, Academic Press, Inc., Boston, MA, 1993.  Google Scholar

[5]

N. R. C. Birkett and N. K. Nichols, Optimal control problems in tidal power generation, Industrial Numerical Analysis, Oxford Sci. Publ., Oxford Univ. Press, New York, 1986, 53-89.  Google Scholar

[6]

T. BiswasS. Dharmatti and M. T. Mohan, Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations, Analysis (Berlin), 40 (2020), 127-150.  doi: 10.1515/anly-2019-0049.  Google Scholar

[7]

T. Biswas, S. Dharmatti and M. T. Mohan, Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations, J. Math. Fluid Mech., 22 (2020), Art. 34, 42 pp. doi: 10.1007/s00021-020-00493-8.  Google Scholar

[8]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, PA, 2013.  Google Scholar

[9]

S. DoboszczakM. T. Mohan and S. S. Sritharan, Existence of optimal controls for compressible viscous flow, J. Math. Fluid Mech., 20 (2018), 199-211.  doi: 10.1007/s00021-017-0318-5.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998.  Google Scholar

[11]

I. Ekeland and T. Turnbull, Infinite-dimensional Optimization and Convexity, University of Chicago Press, Chicago, IL, 1983.  Google Scholar

[12]

A. V. Fursikov, Optimal control of distributed systems: Theory and applications, American Mathematical Society, Providence, RI, (2000). doi: 10.1090/mmono/187.  Google Scholar

[13]

G. Galilei, Dialogue Concerning the Two Chief World Systems, 1632. Google Scholar

[14]

R. G. Gordeev, The existence of a periodic solution in tide dynamic problem, Journal of Soviet Mathematics, 6 (1976), 1-4.  doi: 10.1007/BF01084856.  Google Scholar

[15]

M. D. Gunzburger, Perspectives in Flow Control and Optimization, Advances in Design and Control, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.  Google Scholar

[16]

A. Haseena, M. Suvinthra, M. T. Mohan and K. Balachandran, Moderate deviations for stochastic tidal dynamics equation with multiplicative noise, Applicable Analysis, 2020. doi: 10.1080/00036811.2020.1781827.  Google Scholar

[17]

V. M. Ipatova, Solvability of a tide dynamics model in adjacent seas, Russian J. Numer. Anal. Math. Modelling, 20 (2005), 67-79.  doi: 10.1515/1569398053270822.  Google Scholar

[18]

B. A. Kagan, Hydrodynamic Models of Tidal Motions in the Sea, Gidrometeoizdat, Leningrad, 1968. Google Scholar

[19]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[20]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[21]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[22]

G. I. Marchuk and B. A. Kagan, Ocean Tides: Mathematical Models and Numerical Experiments, Pergamon Press, Elmsford, NY, 1984.  Google Scholar

[23]

G. I. Marchuk and B. A. Kagan, Dynamics of Ocean Tides, Kluwer Academic Publishers, Dordrecht/Boston/London, 1989. doi: 10.1007/978-94-009-2571-7.  Google Scholar

[24]

U. Manna, J. L. Menaldi and S. S. Sritharan, Stochastic analysis of tidal dynamics equation, Infinite Dimensional Stochastic Analysis, World Sci. Publ., Hackensack, NJ, (2008), 90–113. doi: 10.1142/9789812779557_0006.  Google Scholar

[25]

M. T. Mohan, On the two dimensional tidal dynamics system: Stationary solution and stability, Appl. Anal., 99 (2020), 1795-1826.  doi: 10.1080/00036811.2018.1546002.  Google Scholar

[26]

M. T. Mohan, Dynamic programming and feedback analysis of the two dimensional tidal dynamics system, in ESAIM: Control, Optimisation and Calculus of Variations, 2020. doi: 10.1051/cocv/2020025.  Google Scholar

[27]

M. T. Mohan, Necessary conditions for distributed optimal control of two dimensional tidal dynamics system with state constraints, work-in-progress, (2020). Google Scholar

[28]

R. Mosetti, Optimal control of sea level in a tidal basin by means of the Pontryagin maximum principle, Applied Mathematical Modelling, 9 (1985), 321-324.   Google Scholar

[29]

I. Newton, Philosophiae Naturalis Principia Mathematica, William Dawson & Sons, Ltd., London, 1687.  Google Scholar

[30]

J. Pedlosky, Geophysical Fluid Dyanmics I, II, Springer, Heidelberg, 1981. Google Scholar

[31]

J. P. Raymond, Optimal control of partial differential equations, Université Paul Sabatier, Lecture Notes, 2013. Google Scholar

[32]

S. C. Ryrie and D. T. Bickley, Optimally controlled hydrodynamics for tidal power in the Severn Estuary, Appl. Math. Modelling, 9 (1985), 1-10.  doi: 10.1016/0307-904X(85)90134-9.  Google Scholar

[33]

S. C. Ryrie, An optimal control model of tidal power generation, Appl. Math. Modelling, 19 (1985), 123-126.  doi: 10.1016/0307-904X(94)00012-U.  Google Scholar

[34]

J. Simon, Compact sets in the space $\mathrm{L}^p(0, T;\mathrm{B})$, Ann. Mat. Pura Appl., 146 (1986), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[35]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[36]

S. S. Sritharan, Optimal Control of Viscous Flow, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[37]

M. SuvinthraS. S. Sritharan and K. Balachandran, Large deviations for stochastic tidal dynamics equation, Commun. Stoch. Anal., 9 (2015), 477-502.  doi: 10.31390/cosa.9.4.04.  Google Scholar

[38]

H. Whitney, Analytic extension of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.  doi: 10.1090/S0002-9947-1934-1501735-3.  Google Scholar

[39]

Z. Yanga and J. M. Hamrickb, Optimal control of salinity boundary condition in a tidal model using a variational inverse method, Estuarine, Coastal and Shelf Science, 62 (2005), 13-24.  doi: 10.1016/j.ecss.2004.08.003.  Google Scholar

[40]

H. Yin, Stochastic analysis of backward tidal dynamics equation, Commun. Stoch. Anal., 5 (2011), 745-768.  doi: 10.31390/cosa.5.4.09.  Google Scholar

show all references

References:
[1]

F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, 1 (1990), 303-325.  doi: 10.1007/BF00271794.  Google Scholar

[2]

P. AgarwalU. Manna and D. Mukherjee, Stochastic control of tidal dynamics equation with Lévy noise, Appl. Math. Optim., 79 (2019), 327-396.  doi: 10.1007/s00245-017-9440-2.  Google Scholar

[3]

V. I. Agoshkov and E. A. Botvinovsky, Numerical solution of a hyperbolic-parabolic system by splitting methods and optimal control approaches, Comput. Methods Appl. Math., 7 (2007), 193-207.  doi: 10.2478/cmam-2007-0011.  Google Scholar

[4]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, vol. 190, Academic Press, Inc., Boston, MA, 1993.  Google Scholar

[5]

N. R. C. Birkett and N. K. Nichols, Optimal control problems in tidal power generation, Industrial Numerical Analysis, Oxford Sci. Publ., Oxford Univ. Press, New York, 1986, 53-89.  Google Scholar

[6]

T. BiswasS. Dharmatti and M. T. Mohan, Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations, Analysis (Berlin), 40 (2020), 127-150.  doi: 10.1515/anly-2019-0049.  Google Scholar

[7]

T. Biswas, S. Dharmatti and M. T. Mohan, Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations, J. Math. Fluid Mech., 22 (2020), Art. 34, 42 pp. doi: 10.1007/s00021-020-00493-8.  Google Scholar

[8]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, PA, 2013.  Google Scholar

[9]

S. DoboszczakM. T. Mohan and S. S. Sritharan, Existence of optimal controls for compressible viscous flow, J. Math. Fluid Mech., 20 (2018), 199-211.  doi: 10.1007/s00021-017-0318-5.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998.  Google Scholar

[11]

I. Ekeland and T. Turnbull, Infinite-dimensional Optimization and Convexity, University of Chicago Press, Chicago, IL, 1983.  Google Scholar

[12]

A. V. Fursikov, Optimal control of distributed systems: Theory and applications, American Mathematical Society, Providence, RI, (2000). doi: 10.1090/mmono/187.  Google Scholar

[13]

G. Galilei, Dialogue Concerning the Two Chief World Systems, 1632. Google Scholar

[14]

R. G. Gordeev, The existence of a periodic solution in tide dynamic problem, Journal of Soviet Mathematics, 6 (1976), 1-4.  doi: 10.1007/BF01084856.  Google Scholar

[15]

M. D. Gunzburger, Perspectives in Flow Control and Optimization, Advances in Design and Control, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.  Google Scholar

[16]

A. Haseena, M. Suvinthra, M. T. Mohan and K. Balachandran, Moderate deviations for stochastic tidal dynamics equation with multiplicative noise, Applicable Analysis, 2020. doi: 10.1080/00036811.2020.1781827.  Google Scholar

[17]

V. M. Ipatova, Solvability of a tide dynamics model in adjacent seas, Russian J. Numer. Anal. Math. Modelling, 20 (2005), 67-79.  doi: 10.1515/1569398053270822.  Google Scholar

[18]

B. A. Kagan, Hydrodynamic Models of Tidal Motions in the Sea, Gidrometeoizdat, Leningrad, 1968. Google Scholar

[19]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[20]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[21]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[22]

G. I. Marchuk and B. A. Kagan, Ocean Tides: Mathematical Models and Numerical Experiments, Pergamon Press, Elmsford, NY, 1984.  Google Scholar

[23]

G. I. Marchuk and B. A. Kagan, Dynamics of Ocean Tides, Kluwer Academic Publishers, Dordrecht/Boston/London, 1989. doi: 10.1007/978-94-009-2571-7.  Google Scholar

[24]

U. Manna, J. L. Menaldi and S. S. Sritharan, Stochastic analysis of tidal dynamics equation, Infinite Dimensional Stochastic Analysis, World Sci. Publ., Hackensack, NJ, (2008), 90–113. doi: 10.1142/9789812779557_0006.  Google Scholar

[25]

M. T. Mohan, On the two dimensional tidal dynamics system: Stationary solution and stability, Appl. Anal., 99 (2020), 1795-1826.  doi: 10.1080/00036811.2018.1546002.  Google Scholar

[26]

M. T. Mohan, Dynamic programming and feedback analysis of the two dimensional tidal dynamics system, in ESAIM: Control, Optimisation and Calculus of Variations, 2020. doi: 10.1051/cocv/2020025.  Google Scholar

[27]

M. T. Mohan, Necessary conditions for distributed optimal control of two dimensional tidal dynamics system with state constraints, work-in-progress, (2020). Google Scholar

[28]

R. Mosetti, Optimal control of sea level in a tidal basin by means of the Pontryagin maximum principle, Applied Mathematical Modelling, 9 (1985), 321-324.   Google Scholar

[29]

I. Newton, Philosophiae Naturalis Principia Mathematica, William Dawson & Sons, Ltd., London, 1687.  Google Scholar

[30]

J. Pedlosky, Geophysical Fluid Dyanmics I, II, Springer, Heidelberg, 1981. Google Scholar

[31]

J. P. Raymond, Optimal control of partial differential equations, Université Paul Sabatier, Lecture Notes, 2013. Google Scholar

[32]

S. C. Ryrie and D. T. Bickley, Optimally controlled hydrodynamics for tidal power in the Severn Estuary, Appl. Math. Modelling, 9 (1985), 1-10.  doi: 10.1016/0307-904X(85)90134-9.  Google Scholar

[33]

S. C. Ryrie, An optimal control model of tidal power generation, Appl. Math. Modelling, 19 (1985), 123-126.  doi: 10.1016/0307-904X(94)00012-U.  Google Scholar

[34]

J. Simon, Compact sets in the space $\mathrm{L}^p(0, T;\mathrm{B})$, Ann. Mat. Pura Appl., 146 (1986), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[35]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[36]

S. S. Sritharan, Optimal Control of Viscous Flow, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[37]

M. SuvinthraS. S. Sritharan and K. Balachandran, Large deviations for stochastic tidal dynamics equation, Commun. Stoch. Anal., 9 (2015), 477-502.  doi: 10.31390/cosa.9.4.04.  Google Scholar

[38]

H. Whitney, Analytic extension of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.  doi: 10.1090/S0002-9947-1934-1501735-3.  Google Scholar

[39]

Z. Yanga and J. M. Hamrickb, Optimal control of salinity boundary condition in a tidal model using a variational inverse method, Estuarine, Coastal and Shelf Science, 62 (2005), 13-24.  doi: 10.1016/j.ecss.2004.08.003.  Google Scholar

[40]

H. Yin, Stochastic analysis of backward tidal dynamics equation, Commun. Stoch. Anal., 5 (2011), 745-768.  doi: 10.31390/cosa.5.4.09.  Google Scholar

[1]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[3]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[4]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[5]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[6]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[7]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[8]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[9]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[10]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[11]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[12]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[13]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[14]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[15]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[16]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[17]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[18]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[19]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[20]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (144)
  • HTML views (396)
  • Cited by (0)

Other articles
by authors

[Back to Top]