[1]
|
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, New YorkLondon, 1975.
|
[2]
|
V. Barbu, Optimal Control of Variational Inequalities, vol. 100 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1984.
|
[3]
|
A. Bejan, Convection Heat Transfer, 4th edition, J. Wiley & Sons, 2013.
doi: 10.1002/9781118671627.
|
[4]
|
A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications, Springer-Verlag, Berlin, Heidelberg, 2002.
doi: 10.1007/978-3-662-12905-0.
|
[5]
|
L. M. Betz, Second-order sufficient optimality conditions for optimal control of non-smooth, semilinear parabolic equations, SIAM Journal on Control and Optimization, 57 (2019), 4033-4062.
doi: 10.1137/19M1239106.
|
[6]
|
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, Berlin, Heidelberg, 2000.
doi: 10.1007/978-1-4612-1394-9.
|
[7]
|
E. Casas and V. Dhamo, Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data, Numer. Math., 117 (2011), 115-145.
doi: 10.1007/s00211-010-0344-1.
|
[8]
|
E. Casas and V. Dhamo, Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations, Comput. Optim. Appl., 52 (2012), 719-756.
doi: 10.1007/s10589-011-9440-0.
|
[9]
|
E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718.
doi: 10.1137/080720048.
|
[10]
|
E. Casas and F. Tröltzsch, Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations, ESAIM Control Optim. Calc. Var., 17 (2011), 771-800.
doi: 10.1051/cocv/2010025.
|
[11]
|
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-9982-5.
|
[12]
|
C. Christof, C. Clason, C. Meyer and S. Walter, Optimal control of a non-smooth semilinear elliptic equation, Mathematical Control and Related Fields, 8 (2018), 247-276.
doi: 10.3934/mcrf.2018011.
|
[13]
|
C. Clason and K. Kunisch, A convex analysis approach to multi-material topology optimization, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1917-1936.
doi: 10.1051/m2an/2016012.
|
[14]
|
P. Fusek, D. Klatte and B. Kummer, Examples and counterexamples in Lipschitz analysis, Control Cybernet., 31 (2002), 471-492.
|
[15]
|
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2011.
|
[16]
|
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Pub, Program, 1985.
|
[17]
|
R. Herzog, C. Meyer and G. Wachsmuth, B- and strong stationarity for optimal control of static plasticity with hardening, SIAM J. Optim., 23 (2013), 321-352.
doi: 10.1137/110821147.
|
[18]
|
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, SIAM, 2008.
doi: 10.1137/1.9780898718614.
|
[19]
|
A. Logg and G. N. Wells, DOLFIN: automated finite element computing, ACM Transactions on Mathematical Software, 37 (2010), Art. 20, 28pp.
doi: 10.1145/1731022.1731030.
|
[20]
|
A. Logg, G. N. Wells and J. Hake, DOLFIN: A C++/Python Finite Element Library, Springer, 2012.
|
[21]
|
C. Meyer and L. M. Susu, Optimal control of nonsmooth, semilinear parabolic equations, SIAM J. Control Optim., 55 (2017), 2206-2234.
doi: 10.1137/15M1040426.
|
[22]
|
C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-69952-1.
|
[23]
|
P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems, Theory, Algorithms and Applications, Marcel Dekker, 1994.
|
[24]
|
S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4614-4340-7.
|
[25]
|
D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems, Springer-Verlag, Berlin, Heidelberg, 1990.
doi: 10.1007/BFb0085564.
|
[26]
|
M. Ulbrich, Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, SIAM J. Optim., 13 (2002), 805-842.
doi: 10.1137/S1052623400371569.
|
[27]
|
A. Visintin, Models of Phase Transitions, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4078-5.
|
[28]
|
E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0.
|
[29]
|
Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press.
|