
-
Previous Article
Strict dissipativity for discrete time discounted optimal control problems
- MCRF Home
- This Issue
-
Next Article
Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains
Strict dissipativity analysis for classes of optimal control problems involving probability density functions
1. | Chair of Serious Games, University of Bayreuth, 95440 Bayreuth, Germany |
2. | Chair of Applied Mathematics, University of Bayreuth, 95440 Bayreuth, Germany |
Motivated by the stability and performance analysis of model predictive control schemes, we investigate strict dissipativity for a class of optimal control problems involving probability density functions. The dynamics are governed by a Fokker-Planck partial differential equation. However, for the particular classes under investigation involving linear dynamics, linear feedback laws, and Gaussian probability density functions, we are able to significantly simplify these dynamics. This enables us to perform an in-depth analysis of strict dissipativity for different cost functions.
References:
[1] |
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta,
Mean field games: Numerical methods for the planning problem, SIAM J. Control Optim., 50 (2012), 77-109.
doi: 10.1137/100790069. |
[2] |
D. Angeli, R. Amrit and J. B. Rawlings,
On average performance and stability of economic model predictive control, IEEE Trans. Autom. Control, 57 (2012), 1615-1626.
doi: 10.1109/TAC.2011.2179349. |
[3] |
M. Annunziato and A. Borzì,
Optimal control of probability density functions of stochastic processes, Math. Model. Anal., 15 (2010), 393-407.
doi: 10.3846/1392-6292.2010.15.393-407. |
[4] |
M. Annunziato and A. Borzì,
A Fokker-Planck control framework for multidimensional stochastic processes, J. Comput. Appl. Math., 237 (2013), 487-507.
doi: 10.1016/j.cam.2012.06.019. |
[5] |
J.-D. Benamou and G. Carlier,
Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, J. Optim. Theory Appl., 167 (2015), 1-26.
doi: 10.1007/s10957-015-0725-9. |
[6] |
M. Bongini, M. Fornasier, F. Rossi and F. Solombrino,
Mean-field Pontryagin maximum principle, J. Optim. Theory Appl., 175 (2017), 1-38.
doi: 10.1007/s10957-017-1149-5. |
[7] |
T. Breiten, K. Kunisch and L. Pfeiffer,
Control strategies for the Fokker-Planck equation, ESAIM: COCV, 24 (2018), 741-763.
doi: 10.1051/cocv/2017046. |
[8] |
T. Breiten and L. Pfeiffer,
On the turnpike property and the receding-horizon method for linear-quadratic optimal control problems, SIAM Journal on Control and Optimization, 58 (2020), 1077-1102.
doi: 10.1137/18M1225811. |
[9] |
T. Damm, L. Grüne, M. Stieler and K. Worthmann,
An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM J. Control Optim., 52 (2014), 1935-1957.
doi: 10.1137/120888934. |
[10] |
M. Diehl, R. Amrit and J. B. Rawlings,
A Lyapunov function for economic optimizing model predictive control, IEEE Trans. Autom. Control, 56 (2011), 703-707.
doi: 10.1109/TAC.2010.2101291. |
[11] |
T. Faulwasser, L. Grüne and M. A. Müller, Economic nonlinear model predictive control, Foundations and Trends® in Systems and Control, 5 (2018), 1–98. Google Scholar |
[12] |
A. Fleig and L. Grüne,
Estimates on the minimal stabilizing horizon length in model predictive control for the Fokker-Planck equation, IFAC-PapersOnLine, 49 (2016), 260-265.
doi: 10.1016/j.ifacol.2016.07.451. |
[13] |
A. Fleig and L. Grüne,
$L^2$-tracking of Gaussian distributions via model predictive control for the Fokker-Planck equation, Vietnam J. Math., 46 (2018), 915-948.
doi: 10.1007/s10013-018-0309-8. |
[14] |
A. Fleig and L. Grüne, On dissipativity of the Fokker-Planck equation for the OrnsteinUhlenbeck process, in IFAC-PapersOnLine, 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019, 52 (2019), 13-18, |
[15] |
C. R. Givens and R. M. Shortt,
A class of wasserstein metrics for probability distributions, Michigan Math. J., 31 (1984), 231-240.
doi: 10.1307/mmj/1029003026. |
[16] |
L. Grüne,
Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725-734.
doi: 10.1016/j.automatica.2012.12.003. |
[17] |
L. Grüne and R. Guglielmi,
Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM J. Cont. Optim., 56 (2018), 1282-1302.
doi: 10.1137/17M112350X. |
[18] |
L. Grüne and M. A. Müller,
On the relation between strict dissipativity and the turnpike property, Syst. Contr. Lett., 90 (2016), 45-53.
doi: 10.1016/j.sysconle.2016.01.003. |
[19] |
L. Grüne and J. Pannek, Nonlinear Model Predictive Control, Theory and Algorithms, 2nd edition, Springer, London, 2017.
doi: 10.1007/978-3-319-46024-6. |
[20] |
L. Grüne, M. Schaller and A. Schiela,
Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control, SIAM J. Control Optim., 57 (2019), 2753-2774.
doi: 10.1137/18M1223083. |
[21] |
L. Grüne and M. Stieler, Asymptotic stability and transient optimality of economic MPC without terminal conditions, J. Proc. Control, 24 (2014), 1187-1196. Google Scholar |
[22] |
L. Grüne, M. Schaller and A. Schiela,
Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations, J. Differ. Equ., 268 (2020), 7311-7341.
doi: 10.1016/j.jde.2019.11.064. |
[23] |
W. Hahn, Stability of Motion, Springer, 1967. |
[24] |
A. Porretta and E. Zuazua,
Long time versus steady state optimal control, SIAM J. Control Optim., 51 (2013), 4242-4273.
doi: 10.1137/130907239. |
[25] |
S. Primak, V. Kontorovich and V. Lyandres, Stochastic Methods and Their Applications to Communications, John Wiley & Sons, Inc., Hoboken, NJ, 2004. |
[26] |
P. E. Protter, Stochastic Integration and Differential Equations, vol. 21 of Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, 2005.
doi: 10.1007/978-3-662-10061-5. |
[27] |
J. B. Rawlings, D. Bonné, J. B. Jørgensen, A. N. Venkat and S. B. Jørgensen,
Unreachable setpoints in model predictive control, IEEE Transactions on Automatic Control, 53 (2008), 2209-2215.
doi: 10.1109/TAC.2008.928125. |
[28] |
J. B. Rawlings, D. Q. Mayne and M. M. Diehl, Model Predictive Control: Theory and Design, 2nd edition, Nob Hill Publishing, 2017. Google Scholar |
[29] |
H. Risken, The Fokker-Planck Equation, vol. 18 of Springer Series in Synergetics, 2nd edition, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-61544-3. |
[30] |
S. Roy, M. Annunziato and A. Borzì,
A Fokker-Planck feedback control-constrained approach for modelling crowd motion, J. Comput. Theor. Transp., 45 (2016), 442-458.
doi: 10.1080/23324309.2016.1189435. |
[31] |
E. Trélat and E. Zuazua,
The turnpike property in finite-dimensional nonlinear optimal control, J. Differential Equations, 258 (2015), 81-114.
doi: 10.1016/j.jde.2014.09.005. |
[32] |
E. Trélat, C. Zhang and E. Zuazua,
Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces, SIAM J. Control Optim., 56 (2018), 1222-1252.
doi: 10.1137/16M1097638. |
[33] |
F. Tröltzsch, Optimal Control of Partial Differential Equations, vol. 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/112. |
[34] |
J. C. Willems,
Dissipative dynamical systems. I. General theory, Arch. Rational Mech. Anal., 45 (1972), 321-351.
doi: 10.1007/BF00276493. |
show all references
References:
[1] |
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta,
Mean field games: Numerical methods for the planning problem, SIAM J. Control Optim., 50 (2012), 77-109.
doi: 10.1137/100790069. |
[2] |
D. Angeli, R. Amrit and J. B. Rawlings,
On average performance and stability of economic model predictive control, IEEE Trans. Autom. Control, 57 (2012), 1615-1626.
doi: 10.1109/TAC.2011.2179349. |
[3] |
M. Annunziato and A. Borzì,
Optimal control of probability density functions of stochastic processes, Math. Model. Anal., 15 (2010), 393-407.
doi: 10.3846/1392-6292.2010.15.393-407. |
[4] |
M. Annunziato and A. Borzì,
A Fokker-Planck control framework for multidimensional stochastic processes, J. Comput. Appl. Math., 237 (2013), 487-507.
doi: 10.1016/j.cam.2012.06.019. |
[5] |
J.-D. Benamou and G. Carlier,
Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, J. Optim. Theory Appl., 167 (2015), 1-26.
doi: 10.1007/s10957-015-0725-9. |
[6] |
M. Bongini, M. Fornasier, F. Rossi and F. Solombrino,
Mean-field Pontryagin maximum principle, J. Optim. Theory Appl., 175 (2017), 1-38.
doi: 10.1007/s10957-017-1149-5. |
[7] |
T. Breiten, K. Kunisch and L. Pfeiffer,
Control strategies for the Fokker-Planck equation, ESAIM: COCV, 24 (2018), 741-763.
doi: 10.1051/cocv/2017046. |
[8] |
T. Breiten and L. Pfeiffer,
On the turnpike property and the receding-horizon method for linear-quadratic optimal control problems, SIAM Journal on Control and Optimization, 58 (2020), 1077-1102.
doi: 10.1137/18M1225811. |
[9] |
T. Damm, L. Grüne, M. Stieler and K. Worthmann,
An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM J. Control Optim., 52 (2014), 1935-1957.
doi: 10.1137/120888934. |
[10] |
M. Diehl, R. Amrit and J. B. Rawlings,
A Lyapunov function for economic optimizing model predictive control, IEEE Trans. Autom. Control, 56 (2011), 703-707.
doi: 10.1109/TAC.2010.2101291. |
[11] |
T. Faulwasser, L. Grüne and M. A. Müller, Economic nonlinear model predictive control, Foundations and Trends® in Systems and Control, 5 (2018), 1–98. Google Scholar |
[12] |
A. Fleig and L. Grüne,
Estimates on the minimal stabilizing horizon length in model predictive control for the Fokker-Planck equation, IFAC-PapersOnLine, 49 (2016), 260-265.
doi: 10.1016/j.ifacol.2016.07.451. |
[13] |
A. Fleig and L. Grüne,
$L^2$-tracking of Gaussian distributions via model predictive control for the Fokker-Planck equation, Vietnam J. Math., 46 (2018), 915-948.
doi: 10.1007/s10013-018-0309-8. |
[14] |
A. Fleig and L. Grüne, On dissipativity of the Fokker-Planck equation for the OrnsteinUhlenbeck process, in IFAC-PapersOnLine, 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019, 52 (2019), 13-18, |
[15] |
C. R. Givens and R. M. Shortt,
A class of wasserstein metrics for probability distributions, Michigan Math. J., 31 (1984), 231-240.
doi: 10.1307/mmj/1029003026. |
[16] |
L. Grüne,
Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725-734.
doi: 10.1016/j.automatica.2012.12.003. |
[17] |
L. Grüne and R. Guglielmi,
Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM J. Cont. Optim., 56 (2018), 1282-1302.
doi: 10.1137/17M112350X. |
[18] |
L. Grüne and M. A. Müller,
On the relation between strict dissipativity and the turnpike property, Syst. Contr. Lett., 90 (2016), 45-53.
doi: 10.1016/j.sysconle.2016.01.003. |
[19] |
L. Grüne and J. Pannek, Nonlinear Model Predictive Control, Theory and Algorithms, 2nd edition, Springer, London, 2017.
doi: 10.1007/978-3-319-46024-6. |
[20] |
L. Grüne, M. Schaller and A. Schiela,
Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control, SIAM J. Control Optim., 57 (2019), 2753-2774.
doi: 10.1137/18M1223083. |
[21] |
L. Grüne and M. Stieler, Asymptotic stability and transient optimality of economic MPC without terminal conditions, J. Proc. Control, 24 (2014), 1187-1196. Google Scholar |
[22] |
L. Grüne, M. Schaller and A. Schiela,
Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations, J. Differ. Equ., 268 (2020), 7311-7341.
doi: 10.1016/j.jde.2019.11.064. |
[23] |
W. Hahn, Stability of Motion, Springer, 1967. |
[24] |
A. Porretta and E. Zuazua,
Long time versus steady state optimal control, SIAM J. Control Optim., 51 (2013), 4242-4273.
doi: 10.1137/130907239. |
[25] |
S. Primak, V. Kontorovich and V. Lyandres, Stochastic Methods and Their Applications to Communications, John Wiley & Sons, Inc., Hoboken, NJ, 2004. |
[26] |
P. E. Protter, Stochastic Integration and Differential Equations, vol. 21 of Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, 2005.
doi: 10.1007/978-3-662-10061-5. |
[27] |
J. B. Rawlings, D. Bonné, J. B. Jørgensen, A. N. Venkat and S. B. Jørgensen,
Unreachable setpoints in model predictive control, IEEE Transactions on Automatic Control, 53 (2008), 2209-2215.
doi: 10.1109/TAC.2008.928125. |
[28] |
J. B. Rawlings, D. Q. Mayne and M. M. Diehl, Model Predictive Control: Theory and Design, 2nd edition, Nob Hill Publishing, 2017. Google Scholar |
[29] |
H. Risken, The Fokker-Planck Equation, vol. 18 of Springer Series in Synergetics, 2nd edition, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-61544-3. |
[30] |
S. Roy, M. Annunziato and A. Borzì,
A Fokker-Planck feedback control-constrained approach for modelling crowd motion, J. Comput. Theor. Transp., 45 (2016), 442-458.
doi: 10.1080/23324309.2016.1189435. |
[31] |
E. Trélat and E. Zuazua,
The turnpike property in finite-dimensional nonlinear optimal control, J. Differential Equations, 258 (2015), 81-114.
doi: 10.1016/j.jde.2014.09.005. |
[32] |
E. Trélat, C. Zhang and E. Zuazua,
Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces, SIAM J. Control Optim., 56 (2018), 1222-1252.
doi: 10.1137/16M1097638. |
[33] |
F. Tröltzsch, Optimal Control of Partial Differential Equations, vol. 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/112. |
[34] |
J. C. Willems,
Dissipative dynamical systems. I. General theory, Arch. Rational Mech. Anal., 45 (1972), 321-351.
doi: 10.1007/BF00276493. |








[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[3] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[4] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[7] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[8] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[9] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[10] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[11] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[12] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[13] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[14] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[15] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[16] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[19] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[20] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]