
- Previous Article
- MCRF Home
- This Issue
-
Next Article
Stochastic maximum principle for problems with delay with dependence on the past through general measures
Exact noise cancellation for 1d-acoustic propagation systems
1. | Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France |
2. | IMT-Atlantique, LS2N UMR CNRS 6004, (Laboratoire des Sciences du Numérique de Nantes), F-44307 Nantes, France |
This paper deals with active noise control applied to a one-dimensional acoustic propagation system. The aim here is to keep over time a zero noise level at a given point. We aim to design this control using noise measurement at some point in the spatial domain. Based on symmetry property, we are able to design a feedback boundary control allowing this fact. Moreover, using D'Alembert formula, an explicit formula of the control can be computed. Even if the focus is made on the wave equation, this approach is easily extendable to more general operators.
References:
[1] |
M. R. Bai and H. Lin,
Plant uncertainty analysis in a duct active noise control problem by using the $H_\infty$ theory, The Journal of the Acoustical Society of America, 104 (1998), 237-247.
doi: 10.1121/1.423274. |
[2] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[3] |
M. Bodson, J. S. Jensen and S. C. Douglas,
Active noise control for periodic disturbances, Proceedings of the 1998 American Control Conference. ACC(IEEE Cat. No.98CH36207), 4 (1998), 2616-2620.
doi: 10.1109/ACC.1998.703109. |
[4] |
C. Boultifat, P. Chevrel, J. Lohéac, M. Yagoubi and P. Loiseau, One-dimensional acoustic propagation model and spatial multi-point active noise control, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), (2017), 2947–2952.
doi: 10.1109/CDC.2017.8264088. |
[5] |
C. Boultifat, P. Loiseau, P. Chevrel, J. Lohéac and M. Yagoubi,
FxLMS versus $H_\infty$ control for broadband acoustic noise attenuation in a cavity, IFAC-PapersOnLine (20th IFAC World Congress), 50 (2017), 9204-9210.
doi: 10.1016/j.ifacol.2017.08.1277. |
[6] |
C. Cattaneo and L. Fontana,
D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424.
doi: 10.1016/S0022-247X(02)00392-X. |
[7] |
R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Mathématiques & Applications (Berlin), Mathematics & Applications, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[8] |
H. Feng and B.-Z. Guo,
Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Trans. Automat. Control, 62 (2017), 1438-1444.
doi: 10.1109/TAC.2016.2572122. |
[9] |
H. Feng and B.-Z. Guo,
A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Trans. Automat. Control, 62 (2017), 3774-3787.
doi: 10.1109/TAC.2016.2636571. |
[10] |
B.-Z. Guo and F.-F. Jin,
Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Automat. Control, 60 (2015), 824-830.
doi: 10.1109/TAC.2014.2335374. |
[11] |
W. Guo, Z.-C. Shao and M. Krstic,
Adaptive rejection of harmonic disturbance anticollocated with control in 1d wave equation, Automatica J. IFAC, 79 (2017), 17-26.
doi: 10.1016/j.automatica.2017.01.034. |
[12] |
B.-Z. Guo and C.-Z. Xu,
The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation, IEEE Trans. Automat. Control, 52 (2007), 371-377.
doi: 10.1109/TAC.2006.890385. |
[13] |
M. Gugat,
Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM J. Control Optim., 53 (2015), 526-546.
doi: 10.1137/140977023. |
[14] |
M. Gugat and G. Leugering,
Time delay in optimal control loops for wave equations, ESAIM, Control Optim. Calc. Var., 23 (2017), 13-37.
doi: 10.1051/cocv/2015038. |
[15] |
V. Komornik, Exact Controllability and Stabilization, The Multiplier Method., RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994. |
[16] |
S. M. Kuo and D. R. Morgan,
Active noise control: A tutorial review, Proceedings of the IEEE, 87 (1999), 943-973.
doi: 10.1109/5.763310. |
[17] |
J. le Rond D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres (Année 1747), 3 (1747), 214–249. Google Scholar |
[18] |
J.-L. Lions,
Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[19] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I., Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. |
[20] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972. |
[21] |
P. Loiseau, P. Chevrel, M. Yagoubi and J. Duffal,
Broadband active noise control design through nonsmooth $H_\infty$ synthesis, IFAC-PapersOnLine (8th IFAC Symposium on Robust Control Design ROCOND 2015), 48 (2015), 396-401.
doi: 10.1016/j.ifacol.2015.09.489. |
[22] |
P. Loiseau, P. Chevrel, M. Yagoubi and J.-M. Duffal, $H_\infty$ multi-objective and multi-model MIMO control design for broadband noise attenuation in an enclosure, in 2016 European Control Conference (ECC), (2016), 643–648.
doi: 10.1109/ECC.2016.7810361. |
[23] |
R. T. O'Brien, J. M. Watkins, G. E. Piper and D. C. Baumann,
$H_\infty$ active noise control of fan noise in an acoustic duct, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 5 (2000), 3028-3032.
doi: 10.1109/ACC.2000.879121. |
[24] |
B. Rafaely and S. J. Elliott,
$H_2/H_\infty$ active control of sound in a headrest: Design and implementation, IEEE Transactions on Control Systems Technology, 7 (1999), 79-84.
doi: 10.1109/87.736757. |
[25] |
B. Sayyarrodsari, J. P. How, B. Hassibi and A. Carrier,
An $H_{\infty}$-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 2 (1998), 1116-1121.
doi: 10.1109/ACC.1998.703585. |
[26] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[27] |
M. Tucsnak and G. Weiss,
From exact observability to identification of singular sources, Math. Control Signals Systems, 27 (2015), 1-21.
doi: 10.1007/s00498-014-0132-z. |
show all references
References:
[1] |
M. R. Bai and H. Lin,
Plant uncertainty analysis in a duct active noise control problem by using the $H_\infty$ theory, The Journal of the Acoustical Society of America, 104 (1998), 237-247.
doi: 10.1121/1.423274. |
[2] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[3] |
M. Bodson, J. S. Jensen and S. C. Douglas,
Active noise control for periodic disturbances, Proceedings of the 1998 American Control Conference. ACC(IEEE Cat. No.98CH36207), 4 (1998), 2616-2620.
doi: 10.1109/ACC.1998.703109. |
[4] |
C. Boultifat, P. Chevrel, J. Lohéac, M. Yagoubi and P. Loiseau, One-dimensional acoustic propagation model and spatial multi-point active noise control, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), (2017), 2947–2952.
doi: 10.1109/CDC.2017.8264088. |
[5] |
C. Boultifat, P. Loiseau, P. Chevrel, J. Lohéac and M. Yagoubi,
FxLMS versus $H_\infty$ control for broadband acoustic noise attenuation in a cavity, IFAC-PapersOnLine (20th IFAC World Congress), 50 (2017), 9204-9210.
doi: 10.1016/j.ifacol.2017.08.1277. |
[6] |
C. Cattaneo and L. Fontana,
D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424.
doi: 10.1016/S0022-247X(02)00392-X. |
[7] |
R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Mathématiques & Applications (Berlin), Mathematics & Applications, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[8] |
H. Feng and B.-Z. Guo,
Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Trans. Automat. Control, 62 (2017), 1438-1444.
doi: 10.1109/TAC.2016.2572122. |
[9] |
H. Feng and B.-Z. Guo,
A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Trans. Automat. Control, 62 (2017), 3774-3787.
doi: 10.1109/TAC.2016.2636571. |
[10] |
B.-Z. Guo and F.-F. Jin,
Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Automat. Control, 60 (2015), 824-830.
doi: 10.1109/TAC.2014.2335374. |
[11] |
W. Guo, Z.-C. Shao and M. Krstic,
Adaptive rejection of harmonic disturbance anticollocated with control in 1d wave equation, Automatica J. IFAC, 79 (2017), 17-26.
doi: 10.1016/j.automatica.2017.01.034. |
[12] |
B.-Z. Guo and C.-Z. Xu,
The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation, IEEE Trans. Automat. Control, 52 (2007), 371-377.
doi: 10.1109/TAC.2006.890385. |
[13] |
M. Gugat,
Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM J. Control Optim., 53 (2015), 526-546.
doi: 10.1137/140977023. |
[14] |
M. Gugat and G. Leugering,
Time delay in optimal control loops for wave equations, ESAIM, Control Optim. Calc. Var., 23 (2017), 13-37.
doi: 10.1051/cocv/2015038. |
[15] |
V. Komornik, Exact Controllability and Stabilization, The Multiplier Method., RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994. |
[16] |
S. M. Kuo and D. R. Morgan,
Active noise control: A tutorial review, Proceedings of the IEEE, 87 (1999), 943-973.
doi: 10.1109/5.763310. |
[17] |
J. le Rond D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres (Année 1747), 3 (1747), 214–249. Google Scholar |
[18] |
J.-L. Lions,
Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[19] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I., Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. |
[20] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972. |
[21] |
P. Loiseau, P. Chevrel, M. Yagoubi and J. Duffal,
Broadband active noise control design through nonsmooth $H_\infty$ synthesis, IFAC-PapersOnLine (8th IFAC Symposium on Robust Control Design ROCOND 2015), 48 (2015), 396-401.
doi: 10.1016/j.ifacol.2015.09.489. |
[22] |
P. Loiseau, P. Chevrel, M. Yagoubi and J.-M. Duffal, $H_\infty$ multi-objective and multi-model MIMO control design for broadband noise attenuation in an enclosure, in 2016 European Control Conference (ECC), (2016), 643–648.
doi: 10.1109/ECC.2016.7810361. |
[23] |
R. T. O'Brien, J. M. Watkins, G. E. Piper and D. C. Baumann,
$H_\infty$ active noise control of fan noise in an acoustic duct, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 5 (2000), 3028-3032.
doi: 10.1109/ACC.2000.879121. |
[24] |
B. Rafaely and S. J. Elliott,
$H_2/H_\infty$ active control of sound in a headrest: Design and implementation, IEEE Transactions on Control Systems Technology, 7 (1999), 79-84.
doi: 10.1109/87.736757. |
[25] |
B. Sayyarrodsari, J. P. How, B. Hassibi and A. Carrier,
An $H_{\infty}$-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 2 (1998), 1116-1121.
doi: 10.1109/ACC.1998.703585. |
[26] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[27] |
M. Tucsnak and G. Weiss,
From exact observability to identification of singular sources, Math. Control Signals Systems, 27 (2015), 1-21.
doi: 10.1007/s00498-014-0132-z. |


[1] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[2] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[3] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[4] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[5] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[6] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[7] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[8] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[9] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[10] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[11] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[12] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[13] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[14] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[15] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[16] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[17] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[18] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[19] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[20] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]