doi: 10.3934/mcrf.2020055

Exact noise cancellation for 1d-acoustic propagation systems

1. 

Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France

2. 

IMT-Atlantique, LS2N UMR CNRS 6004, (Laboratoire des Sciences du Numérique de Nantes), F-44307 Nantes, France

* Corresponding author

Received  March 2020 Revised  August 2020 Published  December 2020

This paper deals with active noise control applied to a one-dimensional acoustic propagation system. The aim here is to keep over time a zero noise level at a given point. We aim to design this control using noise measurement at some point in the spatial domain. Based on symmetry property, we are able to design a feedback boundary control allowing this fact. Moreover, using D'Alembert formula, an explicit formula of the control can be computed. Even if the focus is made on the wave equation, this approach is easily extendable to more general operators.

Citation: Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020055
References:
[1]

M. R. Bai and H. Lin, Plant uncertainty analysis in a duct active noise control problem by using the $H_\infty$ theory, The Journal of the Acoustical Society of America, 104 (1998), 237-247.  doi: 10.1121/1.423274.  Google Scholar

[2]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[3]

M. BodsonJ. S. Jensen and S. C. Douglas, Active noise control for periodic disturbances, Proceedings of the 1998 American Control Conference. ACC(IEEE Cat. No.98CH36207), 4 (1998), 2616-2620.  doi: 10.1109/ACC.1998.703109.  Google Scholar

[4]

C. Boultifat, P. Chevrel, J. Lohéac, M. Yagoubi and P. Loiseau, One-dimensional acoustic propagation model and spatial multi-point active noise control, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), (2017), 2947–2952. doi: 10.1109/CDC.2017.8264088.  Google Scholar

[5]

C. BoultifatP. LoiseauP. ChevrelJ. Lohéac and M. Yagoubi, FxLMS versus $H_\infty$ control for broadband acoustic noise attenuation in a cavity, IFAC-PapersOnLine (20th IFAC World Congress), 50 (2017), 9204-9210.  doi: 10.1016/j.ifacol.2017.08.1277.  Google Scholar

[6]

C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424.  doi: 10.1016/S0022-247X(02)00392-X.  Google Scholar

[7]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Mathématiques & Applications (Berlin), Mathematics & Applications, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[8]

H. Feng and B.-Z. Guo, Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Trans. Automat. Control, 62 (2017), 1438-1444.  doi: 10.1109/TAC.2016.2572122.  Google Scholar

[9]

H. Feng and B.-Z. Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Trans. Automat. Control, 62 (2017), 3774-3787.  doi: 10.1109/TAC.2016.2636571.  Google Scholar

[10]

B.-Z. Guo and F.-F. Jin, Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Automat. Control, 60 (2015), 824-830.  doi: 10.1109/TAC.2014.2335374.  Google Scholar

[11]

W. GuoZ.-C. Shao and M. Krstic, Adaptive rejection of harmonic disturbance anticollocated with control in 1d wave equation, Automatica J. IFAC, 79 (2017), 17-26.  doi: 10.1016/j.automatica.2017.01.034.  Google Scholar

[12]

B.-Z. Guo and C.-Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation, IEEE Trans. Automat. Control, 52 (2007), 371-377.  doi: 10.1109/TAC.2006.890385.  Google Scholar

[13]

M. Gugat, Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM J. Control Optim., 53 (2015), 526-546.  doi: 10.1137/140977023.  Google Scholar

[14]

M. Gugat and G. Leugering, Time delay in optimal control loops for wave equations, ESAIM, Control Optim. Calc. Var., 23 (2017), 13-37.  doi: 10.1051/cocv/2015038.  Google Scholar

[15]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method., RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[16]

S. M. Kuo and D. R. Morgan, Active noise control: A tutorial review, Proceedings of the IEEE, 87 (1999), 943-973.  doi: 10.1109/5.763310.  Google Scholar

[17]

J. le Rond D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres (Année 1747), 3 (1747), 214–249. Google Scholar

[18]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[19]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I., Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[20]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[21]

P. LoiseauP. ChevrelM. Yagoubi and J. Duffal, Broadband active noise control design through nonsmooth $H_\infty$ synthesis, IFAC-PapersOnLine (8th IFAC Symposium on Robust Control Design ROCOND 2015), 48 (2015), 396-401.  doi: 10.1016/j.ifacol.2015.09.489.  Google Scholar

[22]

P. Loiseau, P. Chevrel, M. Yagoubi and J.-M. Duffal, $H_\infty$ multi-objective and multi-model MIMO control design for broadband noise attenuation in an enclosure, in 2016 European Control Conference (ECC), (2016), 643–648. doi: 10.1109/ECC.2016.7810361.  Google Scholar

[23]

R. T. O'BrienJ. M. WatkinsG. E. Piper and D. C. Baumann, $H_\infty$ active noise control of fan noise in an acoustic duct, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 5 (2000), 3028-3032.  doi: 10.1109/ACC.2000.879121.  Google Scholar

[24]

B. Rafaely and S. J. Elliott, $H_2/H_\infty$ active control of sound in a headrest: Design and implementation, IEEE Transactions on Control Systems Technology, 7 (1999), 79-84.  doi: 10.1109/87.736757.  Google Scholar

[25]

B. SayyarrodsariJ. P. HowB. Hassibi and A. Carrier, An $H_{\infty}$-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 2 (1998), 1116-1121.  doi: 10.1109/ACC.1998.703585.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

M. Tucsnak and G. Weiss, From exact observability to identification of singular sources, Math. Control Signals Systems, 27 (2015), 1-21.  doi: 10.1007/s00498-014-0132-z.  Google Scholar

show all references

References:
[1]

M. R. Bai and H. Lin, Plant uncertainty analysis in a duct active noise control problem by using the $H_\infty$ theory, The Journal of the Acoustical Society of America, 104 (1998), 237-247.  doi: 10.1121/1.423274.  Google Scholar

[2]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[3]

M. BodsonJ. S. Jensen and S. C. Douglas, Active noise control for periodic disturbances, Proceedings of the 1998 American Control Conference. ACC(IEEE Cat. No.98CH36207), 4 (1998), 2616-2620.  doi: 10.1109/ACC.1998.703109.  Google Scholar

[4]

C. Boultifat, P. Chevrel, J. Lohéac, M. Yagoubi and P. Loiseau, One-dimensional acoustic propagation model and spatial multi-point active noise control, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), (2017), 2947–2952. doi: 10.1109/CDC.2017.8264088.  Google Scholar

[5]

C. BoultifatP. LoiseauP. ChevrelJ. Lohéac and M. Yagoubi, FxLMS versus $H_\infty$ control for broadband acoustic noise attenuation in a cavity, IFAC-PapersOnLine (20th IFAC World Congress), 50 (2017), 9204-9210.  doi: 10.1016/j.ifacol.2017.08.1277.  Google Scholar

[6]

C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424.  doi: 10.1016/S0022-247X(02)00392-X.  Google Scholar

[7]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Mathématiques & Applications (Berlin), Mathematics & Applications, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[8]

H. Feng and B.-Z. Guo, Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Trans. Automat. Control, 62 (2017), 1438-1444.  doi: 10.1109/TAC.2016.2572122.  Google Scholar

[9]

H. Feng and B.-Z. Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Trans. Automat. Control, 62 (2017), 3774-3787.  doi: 10.1109/TAC.2016.2636571.  Google Scholar

[10]

B.-Z. Guo and F.-F. Jin, Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Automat. Control, 60 (2015), 824-830.  doi: 10.1109/TAC.2014.2335374.  Google Scholar

[11]

W. GuoZ.-C. Shao and M. Krstic, Adaptive rejection of harmonic disturbance anticollocated with control in 1d wave equation, Automatica J. IFAC, 79 (2017), 17-26.  doi: 10.1016/j.automatica.2017.01.034.  Google Scholar

[12]

B.-Z. Guo and C.-Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation, IEEE Trans. Automat. Control, 52 (2007), 371-377.  doi: 10.1109/TAC.2006.890385.  Google Scholar

[13]

M. Gugat, Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM J. Control Optim., 53 (2015), 526-546.  doi: 10.1137/140977023.  Google Scholar

[14]

M. Gugat and G. Leugering, Time delay in optimal control loops for wave equations, ESAIM, Control Optim. Calc. Var., 23 (2017), 13-37.  doi: 10.1051/cocv/2015038.  Google Scholar

[15]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method., RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[16]

S. M. Kuo and D. R. Morgan, Active noise control: A tutorial review, Proceedings of the IEEE, 87 (1999), 943-973.  doi: 10.1109/5.763310.  Google Scholar

[17]

J. le Rond D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres (Année 1747), 3 (1747), 214–249. Google Scholar

[18]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[19]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I., Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[20]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[21]

P. LoiseauP. ChevrelM. Yagoubi and J. Duffal, Broadband active noise control design through nonsmooth $H_\infty$ synthesis, IFAC-PapersOnLine (8th IFAC Symposium on Robust Control Design ROCOND 2015), 48 (2015), 396-401.  doi: 10.1016/j.ifacol.2015.09.489.  Google Scholar

[22]

P. Loiseau, P. Chevrel, M. Yagoubi and J.-M. Duffal, $H_\infty$ multi-objective and multi-model MIMO control design for broadband noise attenuation in an enclosure, in 2016 European Control Conference (ECC), (2016), 643–648. doi: 10.1109/ECC.2016.7810361.  Google Scholar

[23]

R. T. O'BrienJ. M. WatkinsG. E. Piper and D. C. Baumann, $H_\infty$ active noise control of fan noise in an acoustic duct, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 5 (2000), 3028-3032.  doi: 10.1109/ACC.2000.879121.  Google Scholar

[24]

B. Rafaely and S. J. Elliott, $H_2/H_\infty$ active control of sound in a headrest: Design and implementation, IEEE Transactions on Control Systems Technology, 7 (1999), 79-84.  doi: 10.1109/87.736757.  Google Scholar

[25]

B. SayyarrodsariJ. P. HowB. Hassibi and A. Carrier, An $H_{\infty}$-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 2 (1998), 1116-1121.  doi: 10.1109/ACC.1998.703585.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

M. Tucsnak and G. Weiss, From exact observability to identification of singular sources, Math. Control Signals Systems, 27 (2015), 1-21.  doi: 10.1007/s00498-014-0132-z.  Google Scholar

Figure 1.  Experimental setup used to derive the system (1), $ e(t) = p(t, x_c) $ is the sound pressure measured at the controlled point
Figure 2.  Illustration of the positions assumptions for the acoustic system (2)
Figure 3.  Plots of the control and disturbance effect on $ p(t, 0) $. (Parameter and disturbances used are given in Table 1.)
Table 1.  Parameters and disturbance used for the numerical illustration of Figure 3
$ L $ $ \xi $ $ \omega $ $ d(t) $ $ d_0(t, x) $
$ 2 $ $ 3/4 $ $ (a, b) $ with $ \sin(5t) $ $ 10\sin(3t)(x-a)(x-b) $
$ a=-7/4 $ and $ b=-5/4 $
$ L $ $ \xi $ $ \omega $ $ d(t) $ $ d_0(t, x) $
$ 2 $ $ 3/4 $ $ (a, b) $ with $ \sin(5t) $ $ 10\sin(3t)(x-a)(x-b) $
$ a=-7/4 $ and $ b=-5/4 $
[1]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[2]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[3]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[6]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[9]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[10]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[11]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[12]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[13]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[14]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[15]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[16]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[17]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[18]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (22)
  • HTML views (93)
  • Cited by (0)

[Back to Top]