
-
Previous Article
Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations
- MCRF Home
- This Issue
-
Next Article
Optimal control of a non-smooth quasilinear elliptic equation
Optimal control of ODEs with state suprema
1. | Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 40, 97074 Würzburg, Germany |
2. | Brandenburgische Technische Universität Cottbus-Senftenberg, Institute of Mathematics, 03046 Cottbus, Germany |
We consider the optimal control of a differential equation that involves the suprema of the state over some part of the history. In many applications, this non-smooth functional dependence is crucial for the successful modeling of real-world phenomena. We prove the existence of solutions and show that related problems may not possess optimal controls. Due to the non-smoothness in the state equation, we cannot obtain optimality conditions via standard theory. Therefore, we regularize the problem via a LogIntExp functional which generalizes the well-known LogSumExp. By passing to the limit with the regularization, we obtain an optimality system for the original problem. The theory is illustrated by some numerical experiments.
References:
[1] |
V. Azhmyakov, A. Ahmed and E. I. Verriest, On the optimal control of systems evolving with state suprema, in 2016 IEEE 55th Conference on Decision and Control (CDC), 2016, 3617–3623.
doi: 10.1109/CDC.2016.7798813. |
[2] |
D. D. Bainov and S. G. Hristova, Differential Equations with Maxima, Boca Raton, FL: CRC Press, 2011.
![]() |
[3] |
H. T. Banks, Necessary conditions for control problems with variable time lags, SIAM Journal on Control, 6 (1968), 9–47.
doi: 10.1137/0306002. |
[4] |
H. T. Banks,
Variational problems involving functional differential equations, SIAM Journal on Control, 7 (1969), 1-17.
doi: 10.1137/0307001. |
[5] |
P. Blanchard, D. J. Higham and N. J. Higham, Accurately computing the log-sum-exp and softmax functions, IMA Journal of Numerical Analysis, 2020.
doi: 10.1093/imanum/draa038. |
[6] | |
[7] |
C. Christof, C. Meyer, S. Walther and C. Clason,
Optimal control of a non-smooth semilinear elliptic equation, Math. Control Relat. Fields, 8 (2018), 247-276.
doi: 10.3934/mcrf.2018011. |
[8] |
F. H. Clarke and P. R. Wolenski, Necessary conditions for functional differential inclusions, Applied Mathematics & Optimization, 34 (1996), 51–78.
doi: 10.1007/BF01182473. |
[9] |
S. Dashkovskiy, S. G. Hristova, O. Kichmarenko and K. Sapozhnikova, Behavior of solutions to systems with maximum, IFAC-PapersOnLine, 50 (2017), 12925–12930, 20th IFAC World Congress.
doi: 10.1016/j.ifacol.2017.08.1790. |
[10] |
J. Diestel and J. J. Uhl, Vector Measures, Mathematical surveys, American Mathematical Society, Providence, RI, 1977. |
[11] |
R. E. Edwards, Functional Analysis: Theory and Applications, Dover books on mathematics, Dover Publications, 1995. |
[12] |
I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied Mathematics, SIAM, Philadelphia, 1999.
doi: 10.1137/1.9781611971088. |
[13] |
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, URL http://www.deeplearningbook.org. |
[14] |
F. Kruse and M. Ulbrich, A self-concordant interior point approach for optimal control with state constraints, SIAM Journal on Optimization, 25 (2015), 770–806.
doi: 10.1137/130936671. |
[15] |
N. S. Papageorgiou and S. T. Kyritsi-Yiallourou, Handbook of Applied Analysis, vol. 19 of Advances in Mechanics and Mathematics, Springer, New York, 2009.
doi: 10.1007/b120946. |
[16] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J. 1970. |
[17] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[18] |
W. Rudin, Real and Complex Analysis, Second edition. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. |
[19] |
E. I. Verriest and V. Azhmyakov, Advances in optimal control of differential systems with the state suprema, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017,739–744.
doi: 10.1109/CDC.2017.8263748. |
[20] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
show all references
References:
[1] |
V. Azhmyakov, A. Ahmed and E. I. Verriest, On the optimal control of systems evolving with state suprema, in 2016 IEEE 55th Conference on Decision and Control (CDC), 2016, 3617–3623.
doi: 10.1109/CDC.2016.7798813. |
[2] |
D. D. Bainov and S. G. Hristova, Differential Equations with Maxima, Boca Raton, FL: CRC Press, 2011.
![]() |
[3] |
H. T. Banks, Necessary conditions for control problems with variable time lags, SIAM Journal on Control, 6 (1968), 9–47.
doi: 10.1137/0306002. |
[4] |
H. T. Banks,
Variational problems involving functional differential equations, SIAM Journal on Control, 7 (1969), 1-17.
doi: 10.1137/0307001. |
[5] |
P. Blanchard, D. J. Higham and N. J. Higham, Accurately computing the log-sum-exp and softmax functions, IMA Journal of Numerical Analysis, 2020.
doi: 10.1093/imanum/draa038. |
[6] | |
[7] |
C. Christof, C. Meyer, S. Walther and C. Clason,
Optimal control of a non-smooth semilinear elliptic equation, Math. Control Relat. Fields, 8 (2018), 247-276.
doi: 10.3934/mcrf.2018011. |
[8] |
F. H. Clarke and P. R. Wolenski, Necessary conditions for functional differential inclusions, Applied Mathematics & Optimization, 34 (1996), 51–78.
doi: 10.1007/BF01182473. |
[9] |
S. Dashkovskiy, S. G. Hristova, O. Kichmarenko and K. Sapozhnikova, Behavior of solutions to systems with maximum, IFAC-PapersOnLine, 50 (2017), 12925–12930, 20th IFAC World Congress.
doi: 10.1016/j.ifacol.2017.08.1790. |
[10] |
J. Diestel and J. J. Uhl, Vector Measures, Mathematical surveys, American Mathematical Society, Providence, RI, 1977. |
[11] |
R. E. Edwards, Functional Analysis: Theory and Applications, Dover books on mathematics, Dover Publications, 1995. |
[12] |
I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied Mathematics, SIAM, Philadelphia, 1999.
doi: 10.1137/1.9781611971088. |
[13] |
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, URL http://www.deeplearningbook.org. |
[14] |
F. Kruse and M. Ulbrich, A self-concordant interior point approach for optimal control with state constraints, SIAM Journal on Optimization, 25 (2015), 770–806.
doi: 10.1137/130936671. |
[15] |
N. S. Papageorgiou and S. T. Kyritsi-Yiallourou, Handbook of Applied Analysis, vol. 19 of Advances in Mechanics and Mathematics, Springer, New York, 2009.
doi: 10.1007/b120946. |
[16] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J. 1970. |
[17] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[18] |
W. Rudin, Real and Complex Analysis, Second edition. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. |
[19] |
E. I. Verriest and V. Azhmyakov, Advances in optimal control of differential systems with the state suprema, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017,739–744.
doi: 10.1109/CDC.2017.8263748. |
[20] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |

[1] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[2] |
Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167 |
[3] |
Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416 |
[4] |
Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 |
[5] |
Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100 |
[6] |
Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793 |
[7] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic and Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[8] |
Jitai Liang, Ben Niu, Junjie Wei. Linearized stability for abstract functional differential equations subject to state-dependent delays with applications. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6167-6188. doi: 10.3934/dcdsb.2019134 |
[9] |
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038 |
[10] |
Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure and Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016 |
[11] |
Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103 |
[12] |
Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033 |
[13] |
Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27 |
[14] |
John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056 |
[15] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[16] |
Olivier Hénot. On polynomial forms of nonlinear functional differential equations. Journal of Computational Dynamics, 2021, 8 (3) : 309-323. doi: 10.3934/jcd.2021013 |
[17] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110 |
[18] |
Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643 |
[19] |
Jun Zhou, Jun Shen. Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021198 |
[20] |
Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]