doi: 10.3934/mcrf.2021012

Optimal control of ODEs with state suprema

1. 

Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 40, 97074 Würzburg, Germany

2. 

Brandenburgische Technische Universität Cottbus-Senftenberg, Institute of Mathematics, 03046 Cottbus, Germany

* Corresponding author: D. Wachsmuth

Received  May 2019 Revised  November 2019 Published  March 2021

Fund Project: The second and third author were supported by DFG grants within the Priority Program SPP 1962 (Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization), which is gratefully acknowledged

We consider the optimal control of a differential equation that involves the suprema of the state over some part of the history. In many applications, this non-smooth functional dependence is crucial for the successful modeling of real-world phenomena. We prove the existence of solutions and show that related problems may not possess optimal controls. Due to the non-smoothness in the state equation, we cannot obtain optimality conditions via standard theory. Therefore, we regularize the problem via a LogIntExp functional which generalizes the well-known LogSumExp. By passing to the limit with the regularization, we obtain an optimality system for the original problem. The theory is illustrated by some numerical experiments.

Citation: Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021012
References:
[1]

V. Azhmyakov, A. Ahmed and E. I. Verriest, On the optimal control of systems evolving with state suprema, in 2016 IEEE 55th Conference on Decision and Control (CDC), 2016, 3617–3623. doi: 10.1109/CDC.2016.7798813.  Google Scholar

[2] D. D. Bainov and S. G. Hristova, Differential Equations with Maxima, Boca Raton, FL: CRC Press, 2011.   Google Scholar
[3]

H. T. Banks, Necessary conditions for control problems with variable time lags, SIAM Journal on Control, 6 (1968), 9–47. doi: 10.1137/0306002.  Google Scholar

[4]

H. T. Banks, Variational problems involving functional differential equations, SIAM Journal on Control, 7 (1969), 1-17.  doi: 10.1137/0307001.  Google Scholar

[5]

P. Blanchard, D. J. Higham and N. J. Higham, Accurately computing the log-sum-exp and softmax functions, IMA Journal of Numerical Analysis, 2020. doi: 10.1093/imanum/draa038.  Google Scholar

[6]

H. Cartan, Calcul Différentiel, Hermann, Paris, 1967.  Google Scholar

[7]

C. ChristofC. MeyerS. Walther and C. Clason, Optimal control of a non-smooth semilinear elliptic equation, Math. Control Relat. Fields, 8 (2018), 247-276.  doi: 10.3934/mcrf.2018011.  Google Scholar

[8]

F. H. Clarke and P. R. Wolenski, Necessary conditions for functional differential inclusions, Applied Mathematics & Optimization, 34 (1996), 51–78. doi: 10.1007/BF01182473.  Google Scholar

[9]

S. Dashkovskiy, S. G. Hristova, O. Kichmarenko and K. Sapozhnikova, Behavior of solutions to systems with maximum, IFAC-PapersOnLine, 50 (2017), 12925–12930, 20th IFAC World Congress. doi: 10.1016/j.ifacol.2017.08.1790.  Google Scholar

[10]

J. Diestel and J. J. Uhl, Vector Measures, Mathematical surveys, American Mathematical Society, Providence, RI, 1977.  Google Scholar

[11]

R. E. Edwards, Functional Analysis: Theory and Applications, Dover books on mathematics, Dover Publications, 1995.  Google Scholar

[12]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied Mathematics, SIAM, Philadelphia, 1999. doi: 10.1137/1.9781611971088.  Google Scholar

[13]

I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, URL http://www.deeplearningbook.org.  Google Scholar

[14]

F. Kruse and M. Ulbrich, A self-concordant interior point approach for optimal control with state constraints, SIAM Journal on Optimization, 25 (2015), 770–806. doi: 10.1137/130936671.  Google Scholar

[15]

N. S. Papageorgiou and S. T. Kyritsi-Yiallourou, Handbook of Applied Analysis, vol. 19 of Advances in Mechanics and Mathematics, Springer, New York, 2009. doi: 10.1007/b120946.  Google Scholar

[16]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[17]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[18]

W. Rudin, Real and Complex Analysis, Second edition. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.  Google Scholar

[19]

E. I. Verriest and V. Azhmyakov, Advances in optimal control of differential systems with the state suprema, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017,739–744. doi: 10.1109/CDC.2017.8263748.  Google Scholar

[20]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

show all references

References:
[1]

V. Azhmyakov, A. Ahmed and E. I. Verriest, On the optimal control of systems evolving with state suprema, in 2016 IEEE 55th Conference on Decision and Control (CDC), 2016, 3617–3623. doi: 10.1109/CDC.2016.7798813.  Google Scholar

[2] D. D. Bainov and S. G. Hristova, Differential Equations with Maxima, Boca Raton, FL: CRC Press, 2011.   Google Scholar
[3]

H. T. Banks, Necessary conditions for control problems with variable time lags, SIAM Journal on Control, 6 (1968), 9–47. doi: 10.1137/0306002.  Google Scholar

[4]

H. T. Banks, Variational problems involving functional differential equations, SIAM Journal on Control, 7 (1969), 1-17.  doi: 10.1137/0307001.  Google Scholar

[5]

P. Blanchard, D. J. Higham and N. J. Higham, Accurately computing the log-sum-exp and softmax functions, IMA Journal of Numerical Analysis, 2020. doi: 10.1093/imanum/draa038.  Google Scholar

[6]

H. Cartan, Calcul Différentiel, Hermann, Paris, 1967.  Google Scholar

[7]

C. ChristofC. MeyerS. Walther and C. Clason, Optimal control of a non-smooth semilinear elliptic equation, Math. Control Relat. Fields, 8 (2018), 247-276.  doi: 10.3934/mcrf.2018011.  Google Scholar

[8]

F. H. Clarke and P. R. Wolenski, Necessary conditions for functional differential inclusions, Applied Mathematics & Optimization, 34 (1996), 51–78. doi: 10.1007/BF01182473.  Google Scholar

[9]

S. Dashkovskiy, S. G. Hristova, O. Kichmarenko and K. Sapozhnikova, Behavior of solutions to systems with maximum, IFAC-PapersOnLine, 50 (2017), 12925–12930, 20th IFAC World Congress. doi: 10.1016/j.ifacol.2017.08.1790.  Google Scholar

[10]

J. Diestel and J. J. Uhl, Vector Measures, Mathematical surveys, American Mathematical Society, Providence, RI, 1977.  Google Scholar

[11]

R. E. Edwards, Functional Analysis: Theory and Applications, Dover books on mathematics, Dover Publications, 1995.  Google Scholar

[12]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied Mathematics, SIAM, Philadelphia, 1999. doi: 10.1137/1.9781611971088.  Google Scholar

[13]

I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, URL http://www.deeplearningbook.org.  Google Scholar

[14]

F. Kruse and M. Ulbrich, A self-concordant interior point approach for optimal control with state constraints, SIAM Journal on Optimization, 25 (2015), 770–806. doi: 10.1137/130936671.  Google Scholar

[15]

N. S. Papageorgiou and S. T. Kyritsi-Yiallourou, Handbook of Applied Analysis, vol. 19 of Advances in Mechanics and Mathematics, Springer, New York, 2009. doi: 10.1007/b120946.  Google Scholar

[16]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[17]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[18]

W. Rudin, Real and Complex Analysis, Second edition. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.  Google Scholar

[19]

E. I. Verriest and V. Azhmyakov, Advances in optimal control of differential systems with the state suprema, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017,739–744. doi: 10.1109/CDC.2017.8263748.  Google Scholar

[20]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

Figure 1.  Plots for control $ u $, state $ x $, adjoint $ \lambda $ and its time derivative $ \mathrm{d}\lambda $
[1]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[2]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[3]

Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416

[4]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[5]

Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100

[6]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[8]

Jitai Liang, Ben Niu, Junjie Wei. Linearized stability for abstract functional differential equations subject to state-dependent delays with applications. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6167-6188. doi: 10.3934/dcdsb.2019134

[9]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[10]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[11]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[12]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[13]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[14]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

[15]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[16]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

[17]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[18]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[19]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[20]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (18)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]