
-
Previous Article
A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system
- MCRF Home
- This Issue
-
Next Article
Optimal control of ODEs with state suprema
Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations
*. | University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany |
**. | University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany |
In this paper performance indices for economic model predictive controllers (MPC) are considered. Since existing relative performance measures, designed for stabilizing controllers, fail in the economic setting, we propose alternative absolute quantities. We show that these can be applied to assess the performance of the closed loop trajectories on-line while the controller is running. The advantages of our approach are demonstrated by simulations involving a convection-diffusion-system. The method is also combined with proper orthogonal decomposition, thus demonstrating the possibility for both efficient and performant MPC for systems governed by partial differential equations.
References:
[1] |
J. Andrej, Modeling and Optimal Control of Multiphysics Problems Using the Finite Element Method, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:gbv:8-diss-251049 |
[2] |
D. Angeli, R. Amrit and J. B. Rawlings,
On average performance and stability of economic model predictive control, IEEE Transactions on Automatic Control, 57 (2012), 1615-1626.
doi: 10.1109/TAC.2011.2179349. |
[3] |
L. Grüne,
Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725-734.
doi: 10.1016/j.automatica.2012.12.003. |
[4] |
L. Grüne,
Approximation properties of receding horizon optimal control, Jahresbericht der Deutschen Mathematiker-Vereinigung, 118 (2016), 3-37.
doi: 10.1365/s13291-016-0134-5. |
[5] |
L. Grüne and J. Pannek,
Practical NMPC suboptimality estimates along trajectories, Systems & Control Letters, 58 (2009), 161-168.
doi: 10.1016/j.sysconle.2008.10.012. |
[6] |
L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2$^{nd}$ edition, Springer, 2017.
doi: 10.1007/978-3-319-46024-6. |
[7] |
L. Grüne and S. Pirkelmann, Closed-loop performance analysis for economic model predictive control of time-varying systems, in Proceedings of the 56th IEEE Conference on Decision and Control (CDC 2017), (eds. R. Middleton and D. Nesic), 2017, 5563–5569. |
[8] |
L. Grüne and S. Pirkelmann,
Economic model predictive control for time-varying system: Performance and stability results, Optimal Control Applications and Methods, 41 (2020), 42-64.
doi: 10.1002/oca.2492. |
[9] |
L. Grüne, and S. Pirkelmann, Numerical verification of turnpike and continuity properties for time-varying PDEs, IFAC-PapersOnLine, 52 (2019), 7–12.
doi: 10.1016/j.ifacol.2019.08.002. |
[10] |
M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms, (eds. M. Ohlberger, P. Benner, A. Cohen and K. Willcox), SIAM (2017), Philadelphia, PA, 3–63.
doi: 10.1137/1.9781611974829.ch1. |
[11] |
S. Gugercin and A. C. Anthoulas.,
A survey of model reduction by balanced truncation and some new results, International Journal of Control, 77 (2004), 748-766.
doi: 10.1080/00207170410001713448. |
[12] |
P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9780511919701.![]() ![]() ![]() |
[13] |
K. Kunisch and S. Volkwein,
Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90 (2001), 117-148.
doi: 10.1007/s002110100282. |
[14] |
B. Lincoln and A. Rantzer,
Relaxing dynamic programming, IEEE Transactions on Automatic Control, 51 (2006), 1249-1260.
doi: 10.1109/TAC.2006.878720. |
[15] |
L. Mechelli, POD-based State-Constrained Economic Model Predictive Control of Convection-Diffusion Phenomena, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-2zoi8n9sxknm1 |
[16] |
L. Mechelli and S. Volkwein, POD-based economic model predictive control for heat-convection phenomena, Lecture Notes in Computational Science and Engineering, 126, Springer, Cham, 2019, 663–671.
doi: 10.1007/978-3-319-96415-7_61. |
[17] |
L. Mechelli and S. Volkwein, POD-based economic optimal control of heat-convection phenomena, in Numerical Methods for Optimal Control Problems, (M. Falcone, R. Ferretti, L. Grüne and W. M. McEneaney), Springer 2018, 63–87. |
[18] |
M. A. Müller and L. Grüne,
Economic model predictive control without terminal constraints for optimal periodic behavior, Automatica, 70 (2016), 128-139.
doi: 10.1016/j.automatica.2016.03.024. |
[19] |
M. Ohlberger and S. Rave., Reduced basis methods: success, limitations and future challenges., Proceedings of the Conference Algoritmy, 1–12, 2016. |
[20] |
F. Tröltzsch and S. Volkwein,
POD a-posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications, 44 (2009), 83-115.
doi: 10.1007/s10589-008-9224-3. |
[21] |
F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, American Math. Society, Providence, 2010. |
[22] |
M. Zanon, L. Grüne and M. Diehl,
Periodic optimal control, dissipativity and MPC, IEEE Transactions on Automatic Control, 62 (2017), 2943-2949.
doi: 10.1109/TAC.2016.2601881. |
show all references
References:
[1] |
J. Andrej, Modeling and Optimal Control of Multiphysics Problems Using the Finite Element Method, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:gbv:8-diss-251049 |
[2] |
D. Angeli, R. Amrit and J. B. Rawlings,
On average performance and stability of economic model predictive control, IEEE Transactions on Automatic Control, 57 (2012), 1615-1626.
doi: 10.1109/TAC.2011.2179349. |
[3] |
L. Grüne,
Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725-734.
doi: 10.1016/j.automatica.2012.12.003. |
[4] |
L. Grüne,
Approximation properties of receding horizon optimal control, Jahresbericht der Deutschen Mathematiker-Vereinigung, 118 (2016), 3-37.
doi: 10.1365/s13291-016-0134-5. |
[5] |
L. Grüne and J. Pannek,
Practical NMPC suboptimality estimates along trajectories, Systems & Control Letters, 58 (2009), 161-168.
doi: 10.1016/j.sysconle.2008.10.012. |
[6] |
L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2$^{nd}$ edition, Springer, 2017.
doi: 10.1007/978-3-319-46024-6. |
[7] |
L. Grüne and S. Pirkelmann, Closed-loop performance analysis for economic model predictive control of time-varying systems, in Proceedings of the 56th IEEE Conference on Decision and Control (CDC 2017), (eds. R. Middleton and D. Nesic), 2017, 5563–5569. |
[8] |
L. Grüne and S. Pirkelmann,
Economic model predictive control for time-varying system: Performance and stability results, Optimal Control Applications and Methods, 41 (2020), 42-64.
doi: 10.1002/oca.2492. |
[9] |
L. Grüne, and S. Pirkelmann, Numerical verification of turnpike and continuity properties for time-varying PDEs, IFAC-PapersOnLine, 52 (2019), 7–12.
doi: 10.1016/j.ifacol.2019.08.002. |
[10] |
M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms, (eds. M. Ohlberger, P. Benner, A. Cohen and K. Willcox), SIAM (2017), Philadelphia, PA, 3–63.
doi: 10.1137/1.9781611974829.ch1. |
[11] |
S. Gugercin and A. C. Anthoulas.,
A survey of model reduction by balanced truncation and some new results, International Journal of Control, 77 (2004), 748-766.
doi: 10.1080/00207170410001713448. |
[12] |
P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9780511919701.![]() ![]() ![]() |
[13] |
K. Kunisch and S. Volkwein,
Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90 (2001), 117-148.
doi: 10.1007/s002110100282. |
[14] |
B. Lincoln and A. Rantzer,
Relaxing dynamic programming, IEEE Transactions on Automatic Control, 51 (2006), 1249-1260.
doi: 10.1109/TAC.2006.878720. |
[15] |
L. Mechelli, POD-based State-Constrained Economic Model Predictive Control of Convection-Diffusion Phenomena, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-2zoi8n9sxknm1 |
[16] |
L. Mechelli and S. Volkwein, POD-based economic model predictive control for heat-convection phenomena, Lecture Notes in Computational Science and Engineering, 126, Springer, Cham, 2019, 663–671.
doi: 10.1007/978-3-319-96415-7_61. |
[17] |
L. Mechelli and S. Volkwein, POD-based economic optimal control of heat-convection phenomena, in Numerical Methods for Optimal Control Problems, (M. Falcone, R. Ferretti, L. Grüne and W. M. McEneaney), Springer 2018, 63–87. |
[18] |
M. A. Müller and L. Grüne,
Economic model predictive control without terminal constraints for optimal periodic behavior, Automatica, 70 (2016), 128-139.
doi: 10.1016/j.automatica.2016.03.024. |
[19] |
M. Ohlberger and S. Rave., Reduced basis methods: success, limitations and future challenges., Proceedings of the Conference Algoritmy, 1–12, 2016. |
[20] |
F. Tröltzsch and S. Volkwein,
POD a-posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications, 44 (2009), 83-115.
doi: 10.1007/s10589-008-9224-3. |
[21] |
F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, American Math. Society, Providence, 2010. |
[22] |
M. Zanon, L. Grüne and M. Diehl,
Periodic optimal control, dissipativity and MPC, IEEE Transactions on Automatic Control, 62 (2017), 2943-2949.
doi: 10.1109/TAC.2016.2601881. |








Method | rel_err_ |
Alg. Time | Speed-up | |||
FE | – | – | 7791.565 | -0.0014 | 1182 s | – |
POD-FE | 20 | 0.00055 | 7791.591 | 0.0031 | 346 s | 3.4 |
POD-FE | 25 | 0.00008 | 7791.569 | -0.0041 | 396 s | 3.0 |
POD-POD | 20 | 0.00070 | 7791.614 | 0.0042 | 312 s | 3.8 |
POD-POD | 25 | 0.00012 | 7791.577 | -0.0038 | 302 s | 3.9 |
Method | rel_err_ |
Alg. Time | Speed-up | |||
FE | – | – | 7791.565 | -0.0014 | 1182 s | – |
POD-FE | 20 | 0.00055 | 7791.591 | 0.0031 | 346 s | 3.4 |
POD-FE | 25 | 0.00008 | 7791.569 | -0.0041 | 396 s | 3.0 |
POD-POD | 20 | 0.00070 | 7791.614 | 0.0042 | 312 s | 3.8 |
POD-POD | 25 | 0.00012 | 7791.577 | -0.0038 | 302 s | 3.9 |
[1] |
Meixin Xiong, Liuhong Chen, Ju Ming, Jaemin Shin. Accelerating the Bayesian inference of inverse problems by using data-driven compressive sensing method based on proper orthogonal decomposition. Electronic Research Archive, 2021, 29 (5) : 3383-3403. doi: 10.3934/era.2021044 |
[2] |
Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336 |
[3] |
Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359 |
[4] |
Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136 |
[5] |
Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456 |
[6] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial and Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[7] |
João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks and Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303 |
[8] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098 |
[9] |
Judy Day, Jonathan Rubin, Gilles Clermont. Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation. Mathematical Biosciences & Engineering, 2010, 7 (4) : 739-763. doi: 10.3934/mbe.2010.7.739 |
[10] |
Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1127-1139. doi: 10.3934/mbe.2015.12.1127 |
[11] |
Wawan Hafid Syaifudin, Endah R. M. Putri. The application of model predictive control on stock portfolio optimization with prediction based on Geometric Brownian Motion-Kalman Filter. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021119 |
[12] |
Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4407-4431. doi: 10.3934/dcdsb.2020293 |
[13] |
Fritz Colonius, Paulo Régis C. Ruffino. Nonlinear Iwasawa decomposition of control flows. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 339-354. doi: 10.3934/dcds.2007.18.339 |
[14] |
Luis C. Corchón. A Malthus-Swan-Solow model of economic growth. Journal of Dynamics and Games, 2016, 3 (3) : 225-230. doi: 10.3934/jdg.2016012 |
[15] |
Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975-999. doi: 10.3934/mbe.2017051 |
[16] |
Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861 |
[17] |
Gülden Gün Polat, Teoman Özer. On group analysis of optimal control problems in economic growth models. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2853-2876. doi: 10.3934/dcdss.2020215 |
[18] |
Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267 |
[19] |
M. Dolfin, D. Knopoff, L. Leonida, D. Maimone Ansaldo Patti. Escaping the trap of 'blocking': A kinetic model linking economic development and political competition. Kinetic and Related Models, 2017, 10 (2) : 423-443. doi: 10.3934/krm.2017016 |
[20] |
Luis C. Corchón. Corrigendum to "A Malthus-Swan-Solow model of economic growth". Journal of Dynamics and Games, 2018, 5 (2) : 187-187. doi: 10.3934/jdg.2018011 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]