doi: 10.3934/mcrf.2021014

A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system

1. 

Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany

2. 

Department of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany

* Corresponding author: Marita Holtmannspötter

Received  April 2019 Revised  December 2019 Published  March 2021

In this paper we investigate a priori error estimates for the space-time Galerkin finite element discretization of an optimal control problem governed by a simplified linear gradient enhanced damage model. The model equations are of a special structure as the state equation consists of an elliptic PDE which has to be fulfilled at almost all times coupled with an ODE that has to hold true in almost all points in space. The state equation is discretized by a piecewise constant discontinuous Galerkin method in time and usual conforming linear finite elements in space. For the discretization of the control we employ the same discretization technique which turns out to be equivalent to a variational discretization approach. We provide error estimates of optimal order both for the discretization of the state equation as well as for the optimal control. Numerical experiments are added to illustrate the proven rates of convergence.

Citation: Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021014
References:
[1]

T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.  Google Scholar

[2]

E. Casas and K. Chrysafinos, A discontinuous Galerkin time-stepping scheme for the velocity tracking problem, SIAM Journal on Numerical Analysis, 50 (2012), 2281-2306.  doi: 10.1137/110829404.  Google Scholar

[3]

E. Casas and K. Chrysafinos, Analysis of the velocity tracking control problem for the 3D evolutionary Navier-Stokes equations, SIAM Journal on Control and Optimization, 54 (2016), 99-128.  doi: 10.1137/140978107.  Google Scholar

[4]

K. Chudej, H. J. Pesch, M. Wächter, G. Sachs and F. Le Bras, Instationary heat-constrained trajectory optimization of a hypersonic space vehicle by ODE-PDE-constrained optimal control, Variational Analysis and Aerospace Engineering, Springer Optim. Appl., 33, Springer, New York, 2009,127–144. doi: 10.1007/978-0-387-95857-6_8.  Google Scholar

[5]

B. J. Dimitrijevic and K. Hackl, A method for gradient enhancement of continuum damage models, Technische Mechanik, Ruhr-Universität Bochum, 28 (2008), 43-52.   Google Scholar

[6]

B. J. Dimitrijevic and K. Hackl, A regularization framework for damage-plasticity models via gradient enhancement of the free energy, International Journal for Numerical Methods in Biomedical Engineering, 27 (2011), 1199-1210.  doi: 10.1002/cnm.1350.  Google Scholar

[7]

E. Emmrich, Gewöhnliche und Operator-differentialgleichungen, Vieweg, 2004. doi: 10.1007/978-3-322-80240-8.  Google Scholar

[8]

K. ErikssonC. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér, 19 (1985), 611-643.  doi: 10.1051/m2an/1985190406111.  Google Scholar

[9]

K. Eriksson and C. Johnson, Adaptive finite element mothods for parabolic problems I: A linear model problem, SIAM Journal on Numerical Analysis, 28 (1991), 43-77.  doi: 10.1137/0728003.  Google Scholar

[10]

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM Journal on Numerical Analysis, 32 (1995), 706-740.  doi: 10.1137/0732033.  Google Scholar

[11]

L. C. Evans, Partial Differential Equations Vol. 19, American Mathematical Society, Providence, Rhode Island, 1998. Google Scholar

[12]

M. Gerdts and S.-J. Kimmerle, Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin, Discrete Contin. Dyn. Syst. 2015, Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 515–524. doi: 10.3934/proc.2015.0515.  Google Scholar

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Boston, MA, 1985.  Google Scholar

[14]

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Computational Optimization and Applications, 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.  Google Scholar

[15]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Mathematical and Computer Modelling, 38 (2003), 1003-1028.  doi: 10.1016/S0895-7177(03)90102-6.  Google Scholar

[16]

S.-J. Kimmerle and M. Gerdts, Necessary optimality conditions and a semi-smooth Newton approach for an optimal control problem of a coupled system of Saint-Venant equations and ordinary differential equations, Pure Appl. Funct. Anal., 1 (2016), 231-256.   Google Scholar

[17]

S.-J. KimmerleM. Gerdts and R. Herzog, Optimal control of an elastic crane-trolley-load system - a case study for optimal control of coupled ODE-PDE systems, Mathematical and Computer Modelling of Dynamical Systems, 24 (2018), 182-206.  doi: 10.1080/13873954.2017.1405046.  Google Scholar

[18]

A. Logg, K. A. Mardal and G. N. Wells, Automated solution of Differential Equations by the Finite Element Method, Springer Verlag, 2012. Google Scholar

[19]

D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control Problems part I: Problems without control constraints, SIAM Journal on Control and Optimization, 47 (2008), 1150-1177.  doi: 10.1137/070694016.  Google Scholar

[20]

D. Meidner and B. Vexler, Optimal Error Estimates for Fully Discrete Galerkin Approximations of Semilinear Parabolic Equations, ESAIM: M2AN, 52 (2018), 2307-2325.  doi: 10.1051/m2an/2018040.  Google Scholar

[21]

C. MeyerS. M. Schnepp and O. Thoma, Optimal control of the inhomogeneous relativistic Maxwell-Newton-Lorentz equations, SIAM J. Control Optim., 54 (2016), 2490-2525.  doi: 10.1137/14100083X.  Google Scholar

[22]

C. Meyer and L. M. Susu, Analysis of a viscous two-field gradient damage model, part I: Existence and uniqueness, Z. Anal. Anwend., 38 (2019), 249-286.  doi: 10.4171/ZAA/1637.  Google Scholar

[23]

C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part II: Penalization limit, Z. Anal. Anwend., 38 (2019), 439-474.  doi: 10.4171/ZAA/1645.  Google Scholar

[24]

I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numerische Mathematik, 120 (2011), 345-386.  doi: 10.1007/s00211-011-0409-9.  Google Scholar

[25]

L. Susu, Analysis and optimal control of a damage model with penalty, PhD Thesis, TU Dortmund, 2017. Google Scholar

[26]

F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, vol. 2, Vieweg+Teubner, 2009. Google Scholar

[27]

G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD Thesis, TU Chemnitz, 2011. Google Scholar

show all references

References:
[1]

T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.  Google Scholar

[2]

E. Casas and K. Chrysafinos, A discontinuous Galerkin time-stepping scheme for the velocity tracking problem, SIAM Journal on Numerical Analysis, 50 (2012), 2281-2306.  doi: 10.1137/110829404.  Google Scholar

[3]

E. Casas and K. Chrysafinos, Analysis of the velocity tracking control problem for the 3D evolutionary Navier-Stokes equations, SIAM Journal on Control and Optimization, 54 (2016), 99-128.  doi: 10.1137/140978107.  Google Scholar

[4]

K. Chudej, H. J. Pesch, M. Wächter, G. Sachs and F. Le Bras, Instationary heat-constrained trajectory optimization of a hypersonic space vehicle by ODE-PDE-constrained optimal control, Variational Analysis and Aerospace Engineering, Springer Optim. Appl., 33, Springer, New York, 2009,127–144. doi: 10.1007/978-0-387-95857-6_8.  Google Scholar

[5]

B. J. Dimitrijevic and K. Hackl, A method for gradient enhancement of continuum damage models, Technische Mechanik, Ruhr-Universität Bochum, 28 (2008), 43-52.   Google Scholar

[6]

B. J. Dimitrijevic and K. Hackl, A regularization framework for damage-plasticity models via gradient enhancement of the free energy, International Journal for Numerical Methods in Biomedical Engineering, 27 (2011), 1199-1210.  doi: 10.1002/cnm.1350.  Google Scholar

[7]

E. Emmrich, Gewöhnliche und Operator-differentialgleichungen, Vieweg, 2004. doi: 10.1007/978-3-322-80240-8.  Google Scholar

[8]

K. ErikssonC. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér, 19 (1985), 611-643.  doi: 10.1051/m2an/1985190406111.  Google Scholar

[9]

K. Eriksson and C. Johnson, Adaptive finite element mothods for parabolic problems I: A linear model problem, SIAM Journal on Numerical Analysis, 28 (1991), 43-77.  doi: 10.1137/0728003.  Google Scholar

[10]

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM Journal on Numerical Analysis, 32 (1995), 706-740.  doi: 10.1137/0732033.  Google Scholar

[11]

L. C. Evans, Partial Differential Equations Vol. 19, American Mathematical Society, Providence, Rhode Island, 1998. Google Scholar

[12]

M. Gerdts and S.-J. Kimmerle, Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin, Discrete Contin. Dyn. Syst. 2015, Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 515–524. doi: 10.3934/proc.2015.0515.  Google Scholar

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Boston, MA, 1985.  Google Scholar

[14]

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Computational Optimization and Applications, 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.  Google Scholar

[15]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Mathematical and Computer Modelling, 38 (2003), 1003-1028.  doi: 10.1016/S0895-7177(03)90102-6.  Google Scholar

[16]

S.-J. Kimmerle and M. Gerdts, Necessary optimality conditions and a semi-smooth Newton approach for an optimal control problem of a coupled system of Saint-Venant equations and ordinary differential equations, Pure Appl. Funct. Anal., 1 (2016), 231-256.   Google Scholar

[17]

S.-J. KimmerleM. Gerdts and R. Herzog, Optimal control of an elastic crane-trolley-load system - a case study for optimal control of coupled ODE-PDE systems, Mathematical and Computer Modelling of Dynamical Systems, 24 (2018), 182-206.  doi: 10.1080/13873954.2017.1405046.  Google Scholar

[18]

A. Logg, K. A. Mardal and G. N. Wells, Automated solution of Differential Equations by the Finite Element Method, Springer Verlag, 2012. Google Scholar

[19]

D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control Problems part I: Problems without control constraints, SIAM Journal on Control and Optimization, 47 (2008), 1150-1177.  doi: 10.1137/070694016.  Google Scholar

[20]

D. Meidner and B. Vexler, Optimal Error Estimates for Fully Discrete Galerkin Approximations of Semilinear Parabolic Equations, ESAIM: M2AN, 52 (2018), 2307-2325.  doi: 10.1051/m2an/2018040.  Google Scholar

[21]

C. MeyerS. M. Schnepp and O. Thoma, Optimal control of the inhomogeneous relativistic Maxwell-Newton-Lorentz equations, SIAM J. Control Optim., 54 (2016), 2490-2525.  doi: 10.1137/14100083X.  Google Scholar

[22]

C. Meyer and L. M. Susu, Analysis of a viscous two-field gradient damage model, part I: Existence and uniqueness, Z. Anal. Anwend., 38 (2019), 249-286.  doi: 10.4171/ZAA/1637.  Google Scholar

[23]

C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part II: Penalization limit, Z. Anal. Anwend., 38 (2019), 439-474.  doi: 10.4171/ZAA/1645.  Google Scholar

[24]

I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numerische Mathematik, 120 (2011), 345-386.  doi: 10.1007/s00211-011-0409-9.  Google Scholar

[25]

L. Susu, Analysis and optimal control of a damage model with penalty, PhD Thesis, TU Dortmund, 2017. Google Scholar

[26]

F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, vol. 2, Vieweg+Teubner, 2009. Google Scholar

[27]

G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD Thesis, TU Chemnitz, 2011. Google Scholar

Figure 1.  Refinement of the temporal discretization for $N = 66049$(left) and $N = 263169$(right) nodes
Figure 2.  Refinement of the spatial discretization for $M = 512$(left) and $M = 4096$(right) time steps
Figure 3.  Errors $\Vert l-l_\sigma\Vert_{I\times\Omega}$ for different spatial and temporal mesh refinements
[1]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[2]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[3]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[6]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[7]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[8]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[9]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[10]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[11]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[12]

Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078

[13]

Danielle Hilhorst, Pierre Roux. A hyperbolic-elliptic-parabolic PDE model describing chemotactic E. Coli colonies. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021033

[14]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[17]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[18]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[19]

Reza Mazrooei-Sebdani, Zahra Yousefi. The coupled 1:2 resonance in a symmetric case and parametric amplification model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3737-3765. doi: 10.3934/dcdsb.2020255

[20]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (24)
  • HTML views (55)
  • Cited by (0)

[Back to Top]