• Previous Article
    Modeling the pressure distribution in a spatially averaged cerebral capillary network
  • MCRF Home
  • This Issue
  • Next Article
    A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system
September  2021, 11(3): 625-641. doi: 10.3934/mcrf.2021015

External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, Ekaterinburg, 620108, Russia

Received  February 2019 Revised  October 2019 Published  September 2021 Early access  March 2021

We deal with the reachability problem for linear and bilinear discrete-time uncertain systems under integral non-quadratic constraints on additive input terms and set-valued constraints on initial states. The bilinearity is caused by an interval type uncertainty in coefficients of the system. Algorithms for constructing external parallelepiped-valued (shorter, polyhedral) estimates of reachable sets are presented. For linear time-invariant systems, two techniques for constructing touching external estimates with constant orientation matrices are described and compared. For time-dependant bilinear systems, parallelepiped-valued estimates are constructed. For bilinear systems with constant coefficients, nonconvex estimates are proposed in the form of unions of parallelepipeds. Evolution of all estimates is determined by systems of recurrence relations.

Citation: Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021, 11 (3) : 625-641. doi: 10.3934/mcrf.2021015
References:
[1]

R. Baier and T. Donchev, Discrete approximation of impulsive differential inclusions, Numer. Funct. Anal. Optim., 31 (2010), 653-678.  doi: 10.1080/01630563.2010.483878.  Google Scholar

[2]

V. A. BaturinE. V. GoncharovaF. L. Pereira and J. B. Sousa, Measure-controlled dynamic systems: Polyhedral approximation of their reachable set boundary, Autom. Remote Control, 67 (2006), 350-360.  doi: 10.1134/S0005117906030027.  Google Scholar

[3]

F. L. Chernousko and D. Ya. Rokityanskii, Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbations, J. Optim. Theory Appl., 104 (2000), 1-19.  doi: 10.1023/A:1004687620019.  Google Scholar

[4]

T. F. Filippova, Estimates of reachable sets of impulsive control problems with special nonlinearity, AIP Conf. Proc., 1773 (2016), 100004. doi: 10.1063/1.4964998.  Google Scholar

[5]

T. F. Filippova, The HJB approach and state estimation for control systems with uncertainty, IFAC-PapersOnLine, 51 (2018), Issue 13, 7–12. doi: 10.1016/j.ifacol.2018.07.246.  Google Scholar

[6]

T. F. Filippova, Differential equations for ellipsoidal estimates of reachable sets for a class of control systems with nonlinearity and uncertainty, IFAC-PapersOnLine, 51 (2018), Issue 32,770–775. doi: 10.1016/j.ifacol.2018.11.452.  Google Scholar

[7]

A. Girard, C. Le Guernic and O. Maler, Efficient computation of reachable sets of linear time-invariant systems with inputs, in: Hybrid Systems: Computation and Control, Lecture Notes in Comput. Sci., 3927, Springer, Berlin, 2006,257–271. doi: 10.1007/11730637_21.  Google Scholar

[8]

K. G. GuseinovO. OzerE. Akyar and V. N. Ushakov, The approximation of reachable sets of control systems with integral constraint on controls, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 57-73.  doi: 10.1007/s00030-006-4036-6.  Google Scholar

[9]

M. I. Gusev, On convexity of reachable sets of a nonlinear system under integral constraints, IFAC-PapersOnLine 51 (2018), Issue 32,207–212. doi: 10.1016/j.ifacol.2018.11.382.  Google Scholar

[10]

L. Jaulin, M. Kieffer, O. Didrit and É. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001. doi: 10.1007/978-1-4471-0249-6.  Google Scholar

[11]

E. K. Kostousova, State estimation for dynamic systems via parallelotopes: Optimization and parallel computations, Optimiz. Methods and Software, 9 (1998), 269-306.  doi: 10.1080/10556789808805696.  Google Scholar

[12]

E. K. Kostousova, Outer polyhedral estimates for attainability sets of systems with bilinear uncertainty, J. Appl. Math. Mech., 66 (2002), 547–558. Erratum in: ibid., 66 (2002), 857. doi: 10.1016/S0021-8928(02)00073-4.  Google Scholar

[13]

E. K. Kostousova, Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control (in Russian), Vychisl. Tekhnol., 8 (2003), no. 4, 55–74. Also available from: http://www.ict.nsc.ru/jct/content/t8n4/Kostousova.pdf. Google Scholar

[14]

E. K. Kostousova, On the boundedness of outer polyhedral estimates for reachable sets of linear systems, Comput. Math. Math. Phys., 48 (2008), 918–932. Erratum in: ibid., 48 (2008), 1915–1916. doi: 10.1134/S0965542508060043.  Google Scholar

[15]

E. K. Kostousova, State estimation for linear impulsive differential systems through polyhedral techniques, Discrete Contin. Dyn. Syst. (2009), Issue Suppl., 466–475. doi: 10.3934/proc.2009.2009.466.  Google Scholar

[16]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty, Discrete Contin. Dyn. Syst. (2011), Issue Suppl., 864–873. doi: 10.3934/proc.2011.2011.864.  Google Scholar

[17]

E. K. Kostousova, On boundedness and unboundedness of polyhedral estimates for reachable sets of linear differential systems, Reliable Computing, 19 (2013), 26-44.   Google Scholar

[18]

E. K. Kostousova, External polyhedral estimates of reachable sets of linear and bilinear discrete-time systems with integral bounds on additive terms, in Proceedings of 2018 14th International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiys Conference), STAB, IEEE Xplore Digital Library, (2018), 1–4. doi: 10.1109/STAB.2018.8408370.  Google Scholar

[19]

V. M. Kuntsevich and A. B. Kurzhanski, Attainability domains for linear and some classes of nonlinear discrete systems and their control, J. Automation and Inform. Sci., 42 (2010), 1-18.  doi: 10.1615/JAutomatInfScien.v42.i1.10.  Google Scholar

[20]

A. B. Kurzhanski and A. N. Daryin, Dynamic programming for impulse controls, Annual Reviews in Control, 32 (2008), 213-227.  doi: 10.1016/j.arcontrol.2008.08.001.  Google Scholar

[21]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997.  Google Scholar

[22]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes, Theory and Computation, (Systems & Control: Foundations & Applications, Book 85), Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-10277-1.  Google Scholar

[23]

C. Le Guernic, Calcul Efficace de l'Ensemble Atteignable des Systèmes Linéaires avec Incertitudes, Master's thesis, Université Paris VII, 2005. Google Scholar

[24]

A. V. Lotov, Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system, Doklady Mathematics, 95 (2017), 95-98.  doi: 10.1134/S1064562417010045.  Google Scholar

[25]

O. G. Matviychuk, Estimation techniques for bilinear control systems, IFAC-PapersOnLine, 51 (2018), Issue 32,877–882. doi: 10.1016/j.ifacol.2018.11.434.  Google Scholar

[26]

S. Mazurenko, Partial differential equation for evolution of star-shaped reachability domains of differential inclusions, Set-Valued Var. Anal., 24 (2016), 333-354.  doi: 10.1007/s11228-015-0345-4.  Google Scholar

[27]

B. T. PolyakS. A. NazinC. Durieu and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty, Automatica J. IFAC, 40 (2004), 1171-1179.  doi: 10.1016/j.automatica.2004.02.014.  Google Scholar

[28]

V. V. Sinyakov, Method for computing exterior and interior approximations to the reachability sets of bilinear differential systems, Differ. Equ., 51 (2015), 1097-1111.  doi: 10.1134/S0012266115080145.  Google Scholar

[29]

V. M. Veliov, On the relationship between continuous- and discrete-time control systems, CEJOR Cent. Eur. J. Oper. Res., 18 (2010), 511-523.  doi: 10.1007/s10100-010-0167-2.  Google Scholar

show all references

References:
[1]

R. Baier and T. Donchev, Discrete approximation of impulsive differential inclusions, Numer. Funct. Anal. Optim., 31 (2010), 653-678.  doi: 10.1080/01630563.2010.483878.  Google Scholar

[2]

V. A. BaturinE. V. GoncharovaF. L. Pereira and J. B. Sousa, Measure-controlled dynamic systems: Polyhedral approximation of their reachable set boundary, Autom. Remote Control, 67 (2006), 350-360.  doi: 10.1134/S0005117906030027.  Google Scholar

[3]

F. L. Chernousko and D. Ya. Rokityanskii, Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbations, J. Optim. Theory Appl., 104 (2000), 1-19.  doi: 10.1023/A:1004687620019.  Google Scholar

[4]

T. F. Filippova, Estimates of reachable sets of impulsive control problems with special nonlinearity, AIP Conf. Proc., 1773 (2016), 100004. doi: 10.1063/1.4964998.  Google Scholar

[5]

T. F. Filippova, The HJB approach and state estimation for control systems with uncertainty, IFAC-PapersOnLine, 51 (2018), Issue 13, 7–12. doi: 10.1016/j.ifacol.2018.07.246.  Google Scholar

[6]

T. F. Filippova, Differential equations for ellipsoidal estimates of reachable sets for a class of control systems with nonlinearity and uncertainty, IFAC-PapersOnLine, 51 (2018), Issue 32,770–775. doi: 10.1016/j.ifacol.2018.11.452.  Google Scholar

[7]

A. Girard, C. Le Guernic and O. Maler, Efficient computation of reachable sets of linear time-invariant systems with inputs, in: Hybrid Systems: Computation and Control, Lecture Notes in Comput. Sci., 3927, Springer, Berlin, 2006,257–271. doi: 10.1007/11730637_21.  Google Scholar

[8]

K. G. GuseinovO. OzerE. Akyar and V. N. Ushakov, The approximation of reachable sets of control systems with integral constraint on controls, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 57-73.  doi: 10.1007/s00030-006-4036-6.  Google Scholar

[9]

M. I. Gusev, On convexity of reachable sets of a nonlinear system under integral constraints, IFAC-PapersOnLine 51 (2018), Issue 32,207–212. doi: 10.1016/j.ifacol.2018.11.382.  Google Scholar

[10]

L. Jaulin, M. Kieffer, O. Didrit and É. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001. doi: 10.1007/978-1-4471-0249-6.  Google Scholar

[11]

E. K. Kostousova, State estimation for dynamic systems via parallelotopes: Optimization and parallel computations, Optimiz. Methods and Software, 9 (1998), 269-306.  doi: 10.1080/10556789808805696.  Google Scholar

[12]

E. K. Kostousova, Outer polyhedral estimates for attainability sets of systems with bilinear uncertainty, J. Appl. Math. Mech., 66 (2002), 547–558. Erratum in: ibid., 66 (2002), 857. doi: 10.1016/S0021-8928(02)00073-4.  Google Scholar

[13]

E. K. Kostousova, Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control (in Russian), Vychisl. Tekhnol., 8 (2003), no. 4, 55–74. Also available from: http://www.ict.nsc.ru/jct/content/t8n4/Kostousova.pdf. Google Scholar

[14]

E. K. Kostousova, On the boundedness of outer polyhedral estimates for reachable sets of linear systems, Comput. Math. Math. Phys., 48 (2008), 918–932. Erratum in: ibid., 48 (2008), 1915–1916. doi: 10.1134/S0965542508060043.  Google Scholar

[15]

E. K. Kostousova, State estimation for linear impulsive differential systems through polyhedral techniques, Discrete Contin. Dyn. Syst. (2009), Issue Suppl., 466–475. doi: 10.3934/proc.2009.2009.466.  Google Scholar

[16]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty, Discrete Contin. Dyn. Syst. (2011), Issue Suppl., 864–873. doi: 10.3934/proc.2011.2011.864.  Google Scholar

[17]

E. K. Kostousova, On boundedness and unboundedness of polyhedral estimates for reachable sets of linear differential systems, Reliable Computing, 19 (2013), 26-44.   Google Scholar

[18]

E. K. Kostousova, External polyhedral estimates of reachable sets of linear and bilinear discrete-time systems with integral bounds on additive terms, in Proceedings of 2018 14th International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiys Conference), STAB, IEEE Xplore Digital Library, (2018), 1–4. doi: 10.1109/STAB.2018.8408370.  Google Scholar

[19]

V. M. Kuntsevich and A. B. Kurzhanski, Attainability domains for linear and some classes of nonlinear discrete systems and their control, J. Automation and Inform. Sci., 42 (2010), 1-18.  doi: 10.1615/JAutomatInfScien.v42.i1.10.  Google Scholar

[20]

A. B. Kurzhanski and A. N. Daryin, Dynamic programming for impulse controls, Annual Reviews in Control, 32 (2008), 213-227.  doi: 10.1016/j.arcontrol.2008.08.001.  Google Scholar

[21]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997.  Google Scholar

[22]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes, Theory and Computation, (Systems & Control: Foundations & Applications, Book 85), Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-10277-1.  Google Scholar

[23]

C. Le Guernic, Calcul Efficace de l'Ensemble Atteignable des Systèmes Linéaires avec Incertitudes, Master's thesis, Université Paris VII, 2005. Google Scholar

[24]

A. V. Lotov, Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system, Doklady Mathematics, 95 (2017), 95-98.  doi: 10.1134/S1064562417010045.  Google Scholar

[25]

O. G. Matviychuk, Estimation techniques for bilinear control systems, IFAC-PapersOnLine, 51 (2018), Issue 32,877–882. doi: 10.1016/j.ifacol.2018.11.434.  Google Scholar

[26]

S. Mazurenko, Partial differential equation for evolution of star-shaped reachability domains of differential inclusions, Set-Valued Var. Anal., 24 (2016), 333-354.  doi: 10.1007/s11228-015-0345-4.  Google Scholar

[27]

B. T. PolyakS. A. NazinC. Durieu and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty, Automatica J. IFAC, 40 (2004), 1171-1179.  doi: 10.1016/j.automatica.2004.02.014.  Google Scholar

[28]

V. V. Sinyakov, Method for computing exterior and interior approximations to the reachability sets of bilinear differential systems, Differ. Equ., 51 (2015), 1097-1111.  doi: 10.1134/S0012266115080145.  Google Scholar

[29]

V. M. Veliov, On the relationship between continuous- and discrete-time control systems, CEJOR Cent. Eur. J. Oper. Res., 18 (2010), 511-523.  doi: 10.1007/s10100-010-0167-2.  Google Scholar

Figure 1.  Touching external estimates for $ \mathcal{X}[\cdot] $ and $ \mathcal{X}[N] $ from $ \mathfrak{P}^{1+} $ (figures (a), (b)) and $ {\hat {\mathfrak{P}}}^{2+} $ (figures (c), (d)) in Example 1
Figure 2.  External estimates for $ \mathcal{X}[\cdot] $ and $ \mathcal{X}[N] $ in Example 2
Figure 3.  External estimates for $ \mathcal{Y}[N] $ for three cases in Example 3: $ \mathcal{P}^{II+}{[N]} $ from Theorem 5.2 (dashed lines), $ \mathcal{P}^{+, {\rm mod}}{[N]} $ from (49) (solid thick lines), and estimates in the form of unions (48) of several parallelepipeds, not intersections as in previous figures
[1]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[2]

Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864-873. doi: 10.3934/proc.2011.2011.864

[3]

Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723

[4]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[5]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[6]

Roberta Fabbri, Sylvia Novo, Carmen Núñez, Rafael Obaya. Null controllable sets and reachable sets for nonautonomous linear control systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1069-1094. doi: 10.3934/dcdss.2016042

[7]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[8]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[9]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[10]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[11]

Haijun Sun, Xinquan Zhang. Guaranteed cost control of discrete-time switched saturated systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4515-4522. doi: 10.3934/dcdsb.2020300

[12]

Andrii Mironchenko, Hiroshi Ito. Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Mathematical Control & Related Fields, 2016, 6 (3) : 447-466. doi: 10.3934/mcrf.2016011

[13]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[14]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control & Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[15]

Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1197-1211. doi: 10.3934/dcdsb.2011.16.1197

[16]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. Permanence and universal classification of discrete-time competitive systems via the carrying simplex. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1621-1663. doi: 10.3934/dcds.2020088

[17]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[18]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[19]

Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015

[20]

Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021034

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (146)
  • HTML views (150)
  • Cited by (0)

Other articles
by authors

[Back to Top]