doi: 10.3934/mcrf.2021016

Modeling the pressure distribution in a spatially averaged cerebral capillary network

1. 

Technische Universität München, 81675 Munich, Germany

2. 

Far Eastern Federal University, 690950 Vladivostok, Russia

3. 

Institute for Applied Mathematics, FEB RAS, 690041 Vladivostok, Russia

* Corresponding author: Andrey Kovtanyuk

Received  March 2019 Revised  March 2020 Published  March 2021

Fund Project: The work was supported by the Klaus Tschira Foundation, Buhl-Strohmaier Foundation, and Würth Foundation

A boundary value problem for the Poisson's equation with unknown intensities of sources is studied in context of mathematical modeling the pressure distribution in cerebral capillary networks. The problem is formulated as an inverse problem with finite-dimensional overdetermination. The unique solvability of the problem is proven. A numerical algorithm is proposed and implemented.

Citation: Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021016
References:
[1]

J. W. BaishP. A. Netti and R. K. Jain, Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors, Microvasc. Res., 53 (1997), 128-141.  doi: 10.1006/mvre.1996.2005.  Google Scholar

[2]

N. D. BotkinA. E. KovtanyukV. L. TurovaI. N. Sidorenko and R. Lampe, Direct modeling of blood flow through the vascular network of the germinal matrix, Comp. Biol. Med., 92 (2018), 147-155.  doi: 10.1016/j.compbiomed.2017.11.010.  Google Scholar

[3]

N. D. Botkin, A. E. Kovtanyuk, V. L. Turova, I. N. Sidorenko and R. Lampe, Accounting for tube hematocrit in modeling of blood flow in cerebral capillary networks, Comp. Math. Meth. Med., 2019 (2019), 4235937. doi: 10.1155/2019/4235937.  Google Scholar

[4]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[5]

A.-R. A. Khaled and K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Trans., 46 (2003), 4989-5003.  doi: 10.1016/S0017-9310(03)00301-6.  Google Scholar

[6]

A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, V. L. Turova, I. N. Sidorenko and R. Lampe, Nonstationary model of oxygen transport in brain tissue, Comp. Math. Meth. Med., 2020 (2020), 4861654. doi: 10.1155/2020/4861654.  Google Scholar

[7]

A. E. KovtanyukA. Yu. ChebotarevN. D. BotkinV. L. TurovaI. N. Sidorenko and R. Lampe, Continuum model of oxygen transport in brain, J. Math. Anal. Appl., 474 (2019), 1352-1363.  doi: 10.1016/j.jmaa.2019.02.020.  Google Scholar

[8]

A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Dekalchuk, N. D. Botkin and R. Lampe, Analysis of a mathematical model of oxygen transport in brain, Proc. Int. Conf. Days on Diffraction 2018, (2018), 187–191. doi: 10.1109/DD.2018.8553338.  Google Scholar

[9]

A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Dekalchuk, N. D. Botkin and R. Lampe, An iterative algorithm for solving an initial boundary value problem of oxygen transport in brain, Proc. Int. Conf. Days on Diffraction 2019, (2019), 99–104. doi: 10.1109/DD46733.2019.9016443.  Google Scholar

[10]

S. K. PiechnikP. A. Chiarelli and P. Jezzard, Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation, NeuroImage, 39 (2008), 107-118.  doi: 10.1016/j.neuroimage.2007.08.022.  Google Scholar

[11]

S.-W. Su and S. J. Payne, A two phase model of oxygen transport in cerebral tissue, Proc. 31st Ann. Int. Conf. IEEE Eng. Med. Bio. Soc. (EMBC 2009) (2009) 4921–4924. doi: 10.1109/IEMBS.2009.5332469.  Google Scholar

[12]

S.-W. Su, Modelling Blood Flow and Oxygen Transport in the Human Cerebral Cortex, Ph.D thesis, Oxford University, Depart. Eng. Sci. (2011). Google Scholar

[13]

W. J. VankanJ. M. HuygheJ. D. JanssenA. HusonW. J. G. Hacking and W. Schreiner, Finite element analysis of blood flow through biological tissue, Int. J. Eng. Sci., 35 (1997), 375-385.  doi: 10.1016/S0020-7225(96)00108-5.  Google Scholar

[14]

F. J. M. Walters, Intracranial pressure and cerebral blood flow, Update in Anaesthesia, 8 (1998), 18-23.   Google Scholar

show all references

References:
[1]

J. W. BaishP. A. Netti and R. K. Jain, Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors, Microvasc. Res., 53 (1997), 128-141.  doi: 10.1006/mvre.1996.2005.  Google Scholar

[2]

N. D. BotkinA. E. KovtanyukV. L. TurovaI. N. Sidorenko and R. Lampe, Direct modeling of blood flow through the vascular network of the germinal matrix, Comp. Biol. Med., 92 (2018), 147-155.  doi: 10.1016/j.compbiomed.2017.11.010.  Google Scholar

[3]

N. D. Botkin, A. E. Kovtanyuk, V. L. Turova, I. N. Sidorenko and R. Lampe, Accounting for tube hematocrit in modeling of blood flow in cerebral capillary networks, Comp. Math. Meth. Med., 2019 (2019), 4235937. doi: 10.1155/2019/4235937.  Google Scholar

[4]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[5]

A.-R. A. Khaled and K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Trans., 46 (2003), 4989-5003.  doi: 10.1016/S0017-9310(03)00301-6.  Google Scholar

[6]

A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, V. L. Turova, I. N. Sidorenko and R. Lampe, Nonstationary model of oxygen transport in brain tissue, Comp. Math. Meth. Med., 2020 (2020), 4861654. doi: 10.1155/2020/4861654.  Google Scholar

[7]

A. E. KovtanyukA. Yu. ChebotarevN. D. BotkinV. L. TurovaI. N. Sidorenko and R. Lampe, Continuum model of oxygen transport in brain, J. Math. Anal. Appl., 474 (2019), 1352-1363.  doi: 10.1016/j.jmaa.2019.02.020.  Google Scholar

[8]

A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Dekalchuk, N. D. Botkin and R. Lampe, Analysis of a mathematical model of oxygen transport in brain, Proc. Int. Conf. Days on Diffraction 2018, (2018), 187–191. doi: 10.1109/DD.2018.8553338.  Google Scholar

[9]

A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Dekalchuk, N. D. Botkin and R. Lampe, An iterative algorithm for solving an initial boundary value problem of oxygen transport in brain, Proc. Int. Conf. Days on Diffraction 2019, (2019), 99–104. doi: 10.1109/DD46733.2019.9016443.  Google Scholar

[10]

S. K. PiechnikP. A. Chiarelli and P. Jezzard, Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation, NeuroImage, 39 (2008), 107-118.  doi: 10.1016/j.neuroimage.2007.08.022.  Google Scholar

[11]

S.-W. Su and S. J. Payne, A two phase model of oxygen transport in cerebral tissue, Proc. 31st Ann. Int. Conf. IEEE Eng. Med. Bio. Soc. (EMBC 2009) (2009) 4921–4924. doi: 10.1109/IEMBS.2009.5332469.  Google Scholar

[12]

S.-W. Su, Modelling Blood Flow and Oxygen Transport in the Human Cerebral Cortex, Ph.D thesis, Oxford University, Depart. Eng. Sci. (2011). Google Scholar

[13]

W. J. VankanJ. M. HuygheJ. D. JanssenA. HusonW. J. G. Hacking and W. Schreiner, Finite element analysis of blood flow through biological tissue, Int. J. Eng. Sci., 35 (1997), 375-385.  doi: 10.1016/S0020-7225(96)00108-5.  Google Scholar

[14]

F. J. M. Walters, Intracranial pressure and cerebral blood flow, Update in Anaesthesia, 8 (1998), 18-23.   Google Scholar

Figure 1.  Stencil corresponding to the cubic topology
Figure 2.  The pressure distribution
Figure 3.  The absolute velocity distribution
[1]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[2]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[3]

Hirokazu Saito, Xin Zhang. Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021051

[4]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[5]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[6]

Arianna Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021009

[7]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[8]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[10]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[11]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[12]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[13]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[14]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[15]

Flank D. M. Bezerra, Rodiak N. Figueroa-López, Marcelo J. D. Nascimento. Fractional oscillon equations; solvability and connection with classical oscillon equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021067

[16]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[17]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[18]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[19]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[20]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (30)
  • HTML views (54)
  • Cited by (0)

[Back to Top]