-
Previous Article
Uncertainty damping in kinetic traffic models by driver-assist controls
- MCRF Home
- This Issue
-
Next Article
Modeling the pressure distribution in a spatially averaged cerebral capillary network
Second order directional shape derivatives of integrals on submanifolds
Universität Bayreuth, 95440 Bayreuth, Germany |
We compute first and second order shape sensitivities of integrals on smooth submanifolds using a variant of shape differentiation. The result is a quadratic form in terms of one perturbation vector field that yields a second order quadratic model of the perturbed functional. We discuss the structure of this derivative, derive domain expressions and Hadamard forms in a general geometric framework, and give a detailed geometric interpretation of the arising terms.
References:
[1] |
D. Bucur and J.-P. Zolésio,
Anatomy of the shape Hessian via Lie brackets, Ann. Mat. Pura Appl., 173 (1997), 127-143.
doi: 10.1007/BF01783465. |
[2] |
M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 22 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2011.
doi: 10.1137/1.9780898719826. |
[3] |
F. R. Desaint and J.-P. Zolésio,
Manifold derivative in the Laplace-Beltrami equation, J. Funct. Anal., 151 (1997), 234-269.
doi: 10.1006/jfan.1997.3130. |
[4] |
A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique, 48 of Mathématiques & Applications (Berlin), Springer, Berlin, 2005.
doi: 10.1007/3-540-37689-5. |
[5] |
M. Hintermüller and W. Ring,
A second order shape optimization approach for image segmentation, SIAM J. Appl. Math., 64 (2003/04), 442-467.
doi: 10.1137/S0036139902403901. |
[6] |
R. Hiptmair and J. Li,
Shape derivatives in differential forms I: An intrinsic perspective, Ann. Mat. Pura Appl., 192 (2013), 1077-1098.
doi: 10.1007/s10231-012-0259-9. |
[7] |
S. Lang, Fundamentals of Differential Geometry, 191 of Graduate Texts in Mathematics., Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-0541-8. |
[8] |
F. Murat and J. Simon,
Etudes de problems d'optimal design, Lectures Notes in Computer Science, 41 (1976), 54-62.
|
[9] |
A. Novruzi and M. Pierre,
Structure of shape derivatives, J. Evol. Equ., 2 (2002), 365-382.
doi: 10.1007/s00028-002-8093-y. |
[10] |
V. H. Schulz,
A Riemannian view on shape optimization, Found. Comput. Math., 14 (2014), 483-501.
doi: 10.1007/s10208-014-9200-5. |
[11] |
J. Simon, Second variation for domain optimization problems. control and estimation of distributed parameter systems, International Series of Numerical Mathematics, 91, Birkhäuser, Basel, 1989,361–378. |
[12] |
J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Shape Sensitivity Analysis, 16 of Springer Series in Computational Mathematics., Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-642-58106-9. |
[13] |
M. Spivak, A comprehensive Introduction to Differential Geometry. Vol. III, Publish or Perish, Inc., Wilmington, Del., second edition, 1979. |
[14] |
K. Sturm, Convergence of Newton's method in shape optimisation via approximate normal functions, Technical Report arXiv: 1608.02699, arXiv, 2016. |
[15] |
K. Sturm,
A structure theorem for shape functions defined on submanifolds, Interfaces Free Bound., 18 (2016), 523-543.
doi: 10.4171/IFB/372. |
[16] |
L. Younes, Shapes and Diffeomorphisms, 171 of Applied Mathematical Sciences., Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12055-8. |
[17] |
J.-P. Zolésio, Un résultat d'existence de vitesse convergente dans des problèmes d'identification de domaine, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), Aiii, A855–A858. |
[18] |
J.-P. Zolésio, The material derivative (or speed) method for shape optimization, In Optimization of distributed parameter structures, Vol. II (Iowa City, Iowa, 1980), 50 of NATO Adv. Study Inst. Ser. E: Appl. Sci., Nijhoff, The Hague, 1981, 1089–1151. |
show all references
References:
[1] |
D. Bucur and J.-P. Zolésio,
Anatomy of the shape Hessian via Lie brackets, Ann. Mat. Pura Appl., 173 (1997), 127-143.
doi: 10.1007/BF01783465. |
[2] |
M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 22 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2011.
doi: 10.1137/1.9780898719826. |
[3] |
F. R. Desaint and J.-P. Zolésio,
Manifold derivative in the Laplace-Beltrami equation, J. Funct. Anal., 151 (1997), 234-269.
doi: 10.1006/jfan.1997.3130. |
[4] |
A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique, 48 of Mathématiques & Applications (Berlin), Springer, Berlin, 2005.
doi: 10.1007/3-540-37689-5. |
[5] |
M. Hintermüller and W. Ring,
A second order shape optimization approach for image segmentation, SIAM J. Appl. Math., 64 (2003/04), 442-467.
doi: 10.1137/S0036139902403901. |
[6] |
R. Hiptmair and J. Li,
Shape derivatives in differential forms I: An intrinsic perspective, Ann. Mat. Pura Appl., 192 (2013), 1077-1098.
doi: 10.1007/s10231-012-0259-9. |
[7] |
S. Lang, Fundamentals of Differential Geometry, 191 of Graduate Texts in Mathematics., Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-0541-8. |
[8] |
F. Murat and J. Simon,
Etudes de problems d'optimal design, Lectures Notes in Computer Science, 41 (1976), 54-62.
|
[9] |
A. Novruzi and M. Pierre,
Structure of shape derivatives, J. Evol. Equ., 2 (2002), 365-382.
doi: 10.1007/s00028-002-8093-y. |
[10] |
V. H. Schulz,
A Riemannian view on shape optimization, Found. Comput. Math., 14 (2014), 483-501.
doi: 10.1007/s10208-014-9200-5. |
[11] |
J. Simon, Second variation for domain optimization problems. control and estimation of distributed parameter systems, International Series of Numerical Mathematics, 91, Birkhäuser, Basel, 1989,361–378. |
[12] |
J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Shape Sensitivity Analysis, 16 of Springer Series in Computational Mathematics., Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-642-58106-9. |
[13] |
M. Spivak, A comprehensive Introduction to Differential Geometry. Vol. III, Publish or Perish, Inc., Wilmington, Del., second edition, 1979. |
[14] |
K. Sturm, Convergence of Newton's method in shape optimisation via approximate normal functions, Technical Report arXiv: 1608.02699, arXiv, 2016. |
[15] |
K. Sturm,
A structure theorem for shape functions defined on submanifolds, Interfaces Free Bound., 18 (2016), 523-543.
doi: 10.4171/IFB/372. |
[16] |
L. Younes, Shapes and Diffeomorphisms, 171 of Applied Mathematical Sciences., Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12055-8. |
[17] |
J.-P. Zolésio, Un résultat d'existence de vitesse convergente dans des problèmes d'identification de domaine, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), Aiii, A855–A858. |
[18] |
J.-P. Zolésio, The material derivative (or speed) method for shape optimization, In Optimization of distributed parameter structures, Vol. II (Iowa City, Iowa, 1980), 50 of NATO Adv. Study Inst. Ser. E: Appl. Sci., Nijhoff, The Hague, 1981, 1089–1151. |
[1] |
Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations and Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011 |
[2] |
Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825 |
[3] |
Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623 |
[4] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 1-21. doi: 10.3934/dcdss.2021006 |
[5] |
Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations and Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010 |
[6] |
Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055 |
[7] |
Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625 |
[8] |
Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control and Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023 |
[9] |
Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069 |
[10] |
Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389 |
[11] |
Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations and Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331 |
[12] |
Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759 |
[13] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks and Heterogeneous Media, 2021, 16 (1) : 1-29. doi: 10.3934/nhm.2020031 |
[14] |
Youness El Yazidi, Abdellatif ELLABIB. A new hybrid method for shape optimization with application to semiconductor equations. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021034 |
[15] |
John Sebastian Simon, Hirofumi Notsu. A shape optimization problem constrained with the Stokes equations to address maximization of vortices. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022003 |
[16] |
Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473 |
[17] |
Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389 |
[18] |
Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127 |
[19] |
Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633 |
[20] |
Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems and Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]