• Previous Article
    Open-loop equilibriums for a general class of time-inconsistent stochastic optimal control problems
  • MCRF Home
  • This Issue
  • Next Article
    Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems
doi: 10.3934/mcrf.2021019
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland

* Corresponding author: Dariusz Idczak

Received  May 2020 Revised  January 2021 Early access March 2021

In the paper, a new Gronwall lemma for functions of two variables with singular integrals is proved. An application to weak relative compactness of the set of solutions to a fractional partial differential equation is given.

Citation: Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021019
References:
[1]

N. Dunford and B. J. Pettis, Linear operators on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392.  doi: 10.1090/S0002-9947-1940-0002020-4.  Google Scholar

[2]

D. IdczakR. Kamocki and M. Majewski, Nonlinear continuous Fornasini-Marchesini model of fractional order with nonzero initial conditions, Journal of Integral Equations and Applications, 32 (2020), 19-34.  doi: 10.1216/JIE.2020.32.19.  Google Scholar

[3]

D. IdczakK. Kibalczyc and S. Walczak, On an optimization problem with cost of rapid variation of control, J. Aust. Math. Soc. Ser. B., 36 (1994), 117-131.  doi: 10.1017/S0334270000010286.  Google Scholar

[4]

D. Idczak, A fractional multiterm Gronwall lemma and its application to stability of fractional integrodifferential systems, Journal of Integral Equations and Applications, 32 (2020), 447-456.  doi: 10.1216/jie.2020.32.447.  Google Scholar

[5]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences, 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.  Google Scholar

[6]

M. Majewski, Stability analysis of an optimal control problem for a hyperbolic equation, J. Optim. Theory Appl., 141 (2009), 127-146.  doi: 10.1007/s10957-008-9504-1.  Google Scholar

[7]

V. RehbockS. Wangs and K. L. Teo, Computing optimal control with hyperbolic partial differential equation, J. Aust. Math. Soc. Ser. B, 40 (1998), 266-287.  doi: 10.1017/S0334270000012510.  Google Scholar

[8]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1993.  Google Scholar

[9]

A. N. Tikhonov and A. A. Samarski, Equations of Mathematical Physics, Dover Publications, Inc., New York, 1990.  Google Scholar

[10]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[11]

Z. Zhang and Z. Wei, A generalized Gronwall inequality and its application to fractional neural evolution inclusions, Journal of Inequalities and Applications, (2016), Paper No. 45, 18 pp. doi: 10.1186/s13660-016-0991-6.  Google Scholar

show all references

References:
[1]

N. Dunford and B. J. Pettis, Linear operators on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392.  doi: 10.1090/S0002-9947-1940-0002020-4.  Google Scholar

[2]

D. IdczakR. Kamocki and M. Majewski, Nonlinear continuous Fornasini-Marchesini model of fractional order with nonzero initial conditions, Journal of Integral Equations and Applications, 32 (2020), 19-34.  doi: 10.1216/JIE.2020.32.19.  Google Scholar

[3]

D. IdczakK. Kibalczyc and S. Walczak, On an optimization problem with cost of rapid variation of control, J. Aust. Math. Soc. Ser. B., 36 (1994), 117-131.  doi: 10.1017/S0334270000010286.  Google Scholar

[4]

D. Idczak, A fractional multiterm Gronwall lemma and its application to stability of fractional integrodifferential systems, Journal of Integral Equations and Applications, 32 (2020), 447-456.  doi: 10.1216/jie.2020.32.447.  Google Scholar

[5]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences, 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.  Google Scholar

[6]

M. Majewski, Stability analysis of an optimal control problem for a hyperbolic equation, J. Optim. Theory Appl., 141 (2009), 127-146.  doi: 10.1007/s10957-008-9504-1.  Google Scholar

[7]

V. RehbockS. Wangs and K. L. Teo, Computing optimal control with hyperbolic partial differential equation, J. Aust. Math. Soc. Ser. B, 40 (1998), 266-287.  doi: 10.1017/S0334270000012510.  Google Scholar

[8]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1993.  Google Scholar

[9]

A. N. Tikhonov and A. A. Samarski, Equations of Mathematical Physics, Dover Publications, Inc., New York, 1990.  Google Scholar

[10]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[11]

Z. Zhang and Z. Wei, A generalized Gronwall inequality and its application to fractional neural evolution inclusions, Journal of Inequalities and Applications, (2016), Paper No. 45, 18 pp. doi: 10.1186/s13660-016-0991-6.  Google Scholar

[1]

Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006

[2]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[4]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[5]

Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114

[6]

Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3223-3231. doi: 10.3934/dcdss.2020336

[7]

Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045

[8]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3803-3819. doi: 10.3934/dcdss.2021019

[9]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[10]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[11]

Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179

[12]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[13]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[14]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[15]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[16]

Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211

[17]

Panos K. Palamides, Alex P. Palamides. Singular boundary value problems, via Sperner's lemma. Conference Publications, 2007, 2007 (Special) : 814-823. doi: 10.3934/proc.2007.2007.814

[18]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[19]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[20]

Jacques Giacomoni, Tuhina Mukherjee, Konijeti Sreenadh. Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 311-337. doi: 10.3934/dcdss.2019022

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (198)
  • HTML views (299)
  • Cited by (0)

Other articles
by authors

[Back to Top]