[1]
|
S. Bartels, A. Mielke and T. Roubíček, Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM Journal on Numerical Analysis, 50 (2012), 951-976.
doi: 10.1137/100819205.
|
[2]
|
H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
|
[3]
|
E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM Journal on Control and Optimization, 45 (2006), 1586-1611.
doi: 10.1137/050626600.
|
[4]
|
S. Chowdhury, T. Gudi and A. K. Nandakumaran, Error bounds for a Dirichlet boundary control problem based on energy spaces, Mathematics of Computation, 86 (2017), 1103-1126.
doi: 10.1090/mcom/3125.
|
[5]
|
G. Dal Maso, A. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Archive for Rational Mechanics and Analysis, 180 (2006), 237-291.
doi: 10.1007/s00205-005-0407-0.
|
[6]
|
K. Gröger, A $W^{1, p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), 679-687.
doi: 10.1007/BF01442860.
|
[7]
|
T. Gudi and R. Ch. Sau, Finite element analysis of the constrained Dirichlet boundary control problem governed by the diffusion problem, ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), Paper No. 78, 19 pp.
doi: 10.1051/cocv/2019068.
|
[8]
|
W. Han and B. D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Second edition, Interdisciplinary Applied Mathematics, 9. Springer, New York, 2013.
doi: 10.1007/978-1-4614-5940-8.
|
[9]
|
R. Herzog and C. Meyer, Optimal control of static plasticity with linear kinematic hardening, ZAMM Z. Angew. Math. Mech., 91 (2011), 777-794.
doi: 10.1002/zamm.200900378.
|
[10]
|
R. Herzog, C. Meyer and G. Wachsmuth, B- and strong stationarity for optimal control of static plasticity with hardening, SIAM Journal on Optimization, 23 (2013), 321-352.
doi: 10.1137/110821147.
|
[11]
|
R. Herzog, C. Meyer and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, Journal of Mathematical Analysis and Applications, 382 (2011), 802-813.
doi: 10.1016/j.jmaa.2011.04.074.
|
[12]
|
R. Herzog, C. Meyer and G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM Journal on Control and Optimization, 50 (2012), 3052-3082.
doi: 10.1137/100809325.
|
[13]
|
C. Johnson, Existence theorems for plasticity problems, J. Math. Pures Appl., 55 (1976), 431-444.
|
[14]
|
A. Maury, G. Allaire and F. Jouve, Elasto-plastic shape optimization using the level set method, SIAM Journal on Control and Optimization, 56 (2018), 556-581.
doi: 10.1137/17M1128940.
|
[15]
|
S. May, R. Rannacher and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM Journal on Control and Optimization, 51 (2013), 2585-2611.
doi: 10.1137/080735734.
|
[16]
|
C. Meyer and S. Walther, Optimal control of perfect plasticity, part Ⅱ: Displacement tracking, preprint, 2020, arXiv: 2003.09619.
|
[17]
|
A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7.
|
[18]
|
N. Ottosen and M. Ristinmaa, The Mechanics of Constitutive Modeling, Elsevier, Amsterdam, 2005.
|
[19]
|
J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics, 7. Springer-Verlag, New York, 1998.
|
[20]
|
U. Stefanelli, D. Wachsmuth and G. Wachsmuth, Optimal control of a rate-independent evolution equation via viscous regularization, Discrete and Continuous Dynamical Systems. Series S, 10 (2017), 1467-1485.
doi: 10.3934/dcdss.2017076.
|
[21]
|
P.-M. Suquet, Sur les équations de la plasticité: Existence et régularité des solutions, Journal de Mécanique, 20 (1981), 3–39.
|
[22]
|
R. Temam, Mathematical Problems in Plasticity, Courier Dover Publications, 2018.
|
[23]
|
G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD thesis, TU Chemnitz, 2011.
|
[24]
|
G. Wachsmuth, Optimal control of quasi-static plasticity with linear kinematic hardening, Part Ⅰ: Existence and discretization in time, SIAM Journal on Control and Optimization, 50 (2012), 2836–2861 + loose erratum.
doi: 10.1137/110839187.
|
[25]
|
G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening Ⅱ: Regularization and differentiability, Z. Anal. Anwend., 34 (2015), 391-418.
doi: 10.4171/ZAA/1546.
|
[26]
|
G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening Ⅲ: Optimality conditions, Z. Anal. Anwend., 35 (2016), 81-118.
doi: 10.4171/ZAA/1556.
|
[27]
|
S. Walther, C. Meyer and H. Meinlschmidt, Optimal control of an abstract evolution variational inequality with application to homogenized plasticity, Journal of Nonsmooth Analysis and Optimization, 1.
|