doi: 10.3934/mcrf.2021052
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Null controllability of a nonlinear age, space and two-sex structured population dynamics model

1. 

Université de Fada N'Gourma, Laboratoire LAMI, UJKZ Burkina Faso, DeustoTech Fundación Deusto Avda Universidades, 24, 48007, Bilbao, Basque Country, Spain

2. 

Département de Mathématiques de la Décision, Laboratoire LAMI, UJKZ Burkina Faso, Université Thomas SANKARA, Burkina Faso

* Corresponding author: Yacouba Simporé

Received  September 2020 Revised  August 2021 Early access October 2021

Fund Project: The first author is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 694126-Dycon)

In this paper, we study the null controllability of a nonlinear age, space and two-sex structured population dynamics model. This model is such that the nonlinearity and the couplage are at birth level. We consider a population with males and females and we are dealing with two cases of null controllability problems.

The first problem is related to the total extinction, which means that, we estimate a time $ T $ to bring the male and female subpopulation density to zero. The second case concerns null controllability of male or female subpopulation. Since the absence of males or females in the population stops births; so, if we have the total extinction of the females at time $ T, $ and if $ A $ is the life span of the individuals, at time $ T+A $ one will get certainly the total extinction of the population. Our method uses first an observability inequality related to the adjoint of an auxiliary system, a null controllability of the linear auxiliary system, and after the Schauder's fixed point theorem.

Citation: Yacouba Simporé, Oumar Traoré. Null controllability of a nonlinear age, space and two-sex structured population dynamics model. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2021052
References:
[1]

B. Ainseba and S. Aniţa, Internal stabilizability for a reaction-diffusion problem modelling a predator-prey system, Nonlinear Anal., 61 (2005), 491-501.  doi: 10.1016/j.na.2004.09.055.

[2]

B. Ainseba and S. Aniţa, Local exact controllability of the age-dependent population dynamics with diffusion, Abstr. Appl. Anal., 6 (2001), 357-368.  doi: 10.1155/S108533750100063X.

[3]

B. Ainseba and M. Iannelli, Exact controllability of a nonlinear population-dynamics problem, Differential Integral Equations, 16 (2003), 1369-1384. 

[4]

S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Mathematical Modelling: Theory and Applications, 11, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.

[5]

I. Boutaayamou and G. Fragnelli, A degenerate population system: Carleman estimates and controllability, Nonlinear Anal., 195 (2020), 29pp. doi: 10.1016/j.na.2019.111742.

[6]

W. L. Chan and B. Z. Guo., On the semigroups for age-size dependent population dynamics with spatial diffusion, Manuscripia Math., 66 (1989), 161-181.  doi: 10.1007/BF02568489.

[7]

Y. Echarroudi and L. Maniar, Null controllability of a model in population dynamics, Electron. J. Differential Equations, 2014 (2014), 20pp.

[8]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[9]

Y. He and B. Ainseba, Exact null controllability of the Lobesia botrana model with diffusion, J. Math. Anal. Appl., 409 (2014), 530-543.  doi: 10.1016/j.jmaa.2013.07.020.

[10]

N. Hegoburu and S. Aniţa, Null controllability via comparison results for nonlinear age-structured population dynamics, Math. Control Signals Systems, 31 (2019), 38pp. doi: 10.1007/s00498-019-0232-x.

[11]

N. Hegoburu and M. Tucsnak, Null controllability of the Lotka-McKendrick system with spatial diffusion, Math. Control Relat. Fields, 8 (2018), 707-720.  doi: 10.3934/mcrf.2018030.

[12]

M. Iannelli and J. Ripol, Two-sex age structured dynamics in a fixed sex-ratio population, Nonlinear Anal. Real World Appl., 13 (2012), 2562-2577.  doi: 10.1016/j.nonrwa.2012.03.002.

[13]

D. MaityM. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. Math. Pures Appl. (9), 129 (2019), 153-179.  doi: 10.1016/j.matpur.2018.12.006.

[14]

D. MaityM. Tucsnak and E. Zuazua, Controllability of a class of infinite dimensional systems with age structure, Control Cybernet., 48 (2019), 231-260. 

[15]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-662-13159-6.

[16]

Y. Simporé; Controllability of a family of nonlinear population dynamics models, Int. J. Math. Math. Sci., 2021 (2021), 17pp. doi: 10.1155/2021/3581431.

[17]

Y. Simporé, Null controllability of a nonlinear population dynamics with age structuring and spatial diffusion, in Nonlinear Analysis, Geometry and Applications, Trends Math., Birkhäuser/Springer, Cham, 2020, 1–33. doi: 10.1007/978-3-030-57336-2_1.

[18]

O. Traore, Null controllability of a nonlinear population dynamics problem, Int. J. Math. Math. Sci., 2006 (2006), 20pp. doi: 10.1155/IJMMS/2006/49279.

[19]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.

[20]

World Health Organization, World Malaria Report 2018, ISBN: 9789241565653.

[21]

E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems, Springer-Verlag, New York, 1986.

[22]

C. ZhaoM. Wang and P. Zhao, Optimal control of harvesting for age-dependent predator-prey system, Math. Comput. Modelling, 42 (2005), 573-584.  doi: 10.1016/j.mcm.2004.07.019.

show all references

References:
[1]

B. Ainseba and S. Aniţa, Internal stabilizability for a reaction-diffusion problem modelling a predator-prey system, Nonlinear Anal., 61 (2005), 491-501.  doi: 10.1016/j.na.2004.09.055.

[2]

B. Ainseba and S. Aniţa, Local exact controllability of the age-dependent population dynamics with diffusion, Abstr. Appl. Anal., 6 (2001), 357-368.  doi: 10.1155/S108533750100063X.

[3]

B. Ainseba and M. Iannelli, Exact controllability of a nonlinear population-dynamics problem, Differential Integral Equations, 16 (2003), 1369-1384. 

[4]

S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Mathematical Modelling: Theory and Applications, 11, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.

[5]

I. Boutaayamou and G. Fragnelli, A degenerate population system: Carleman estimates and controllability, Nonlinear Anal., 195 (2020), 29pp. doi: 10.1016/j.na.2019.111742.

[6]

W. L. Chan and B. Z. Guo., On the semigroups for age-size dependent population dynamics with spatial diffusion, Manuscripia Math., 66 (1989), 161-181.  doi: 10.1007/BF02568489.

[7]

Y. Echarroudi and L. Maniar, Null controllability of a model in population dynamics, Electron. J. Differential Equations, 2014 (2014), 20pp.

[8]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[9]

Y. He and B. Ainseba, Exact null controllability of the Lobesia botrana model with diffusion, J. Math. Anal. Appl., 409 (2014), 530-543.  doi: 10.1016/j.jmaa.2013.07.020.

[10]

N. Hegoburu and S. Aniţa, Null controllability via comparison results for nonlinear age-structured population dynamics, Math. Control Signals Systems, 31 (2019), 38pp. doi: 10.1007/s00498-019-0232-x.

[11]

N. Hegoburu and M. Tucsnak, Null controllability of the Lotka-McKendrick system with spatial diffusion, Math. Control Relat. Fields, 8 (2018), 707-720.  doi: 10.3934/mcrf.2018030.

[12]

M. Iannelli and J. Ripol, Two-sex age structured dynamics in a fixed sex-ratio population, Nonlinear Anal. Real World Appl., 13 (2012), 2562-2577.  doi: 10.1016/j.nonrwa.2012.03.002.

[13]

D. MaityM. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. Math. Pures Appl. (9), 129 (2019), 153-179.  doi: 10.1016/j.matpur.2018.12.006.

[14]

D. MaityM. Tucsnak and E. Zuazua, Controllability of a class of infinite dimensional systems with age structure, Control Cybernet., 48 (2019), 231-260. 

[15]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-662-13159-6.

[16]

Y. Simporé; Controllability of a family of nonlinear population dynamics models, Int. J. Math. Math. Sci., 2021 (2021), 17pp. doi: 10.1155/2021/3581431.

[17]

Y. Simporé, Null controllability of a nonlinear population dynamics with age structuring and spatial diffusion, in Nonlinear Analysis, Geometry and Applications, Trends Math., Birkhäuser/Springer, Cham, 2020, 1–33. doi: 10.1007/978-3-030-57336-2_1.

[18]

O. Traore, Null controllability of a nonlinear population dynamics problem, Int. J. Math. Math. Sci., 2006 (2006), 20pp. doi: 10.1155/IJMMS/2006/49279.

[19]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.

[20]

World Health Organization, World Malaria Report 2018, ISBN: 9789241565653.

[21]

E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems, Springer-Verlag, New York, 1986.

[22]

C. ZhaoM. Wang and P. Zhao, Optimal control of harvesting for age-dependent predator-prey system, Math. Comput. Modelling, 42 (2005), 573-584.  doi: 10.1016/j.mcm.2004.07.019.

Figure 1.  Illustration of the estimation of $ n(x,0,t) $
Figure 2.  Illustration of observability inequality in the case where $\max\{a_1, b_1\}+\max\{A-a_2;A-b_2\} = a_1+A-a_2$: The backward characteristics starting from $(a, 0)$ with $a\in (a_2, A)$ (green lines) hits the line $(a = A)$, gets renewed by the renewal condition $(1-\gamma)\beta(a, p)n(x, 0, t)+\gamma\beta(a, p)l(x, 0, t)$ and then enters the observation domain $(a_1, a_2)\cap (b_1, b_2)$. More precisely, the backward characteristics need at most $A-a_2$ time to hits the line $a = A$, get renewed by the renewal condition $(1-\gamma)\beta(a, p)n(x, 0, t)+\gamma\beta(a, p)l(x, 0, t)$ and takes maximum $a_1$ time to enter the observation domain. Thus, at least $T = A-a_2+a_1$ time is needed to obtain the observability inequality. So with the conditions $T > A-a_2+a_1$ and $a_1 < \eta < T, $ all the characteristics starting at $(a, 0)$ with $a\in (a_2, A)$ get renewed by the renewal condition $(1-\gamma)\beta(a, p)n(x, 0, t)+\gamma\beta(a, p)l(x, 0, t)$ in $t\in (0, T-\eta)$ and enter the observation domain
[1]

Anthony Tongen, María Zubillaga, Jorge E. Rabinovich. A two-sex matrix population model to represent harem structure. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1077-1092. doi: 10.3934/mbe.2016031

[2]

Agnieszka Ulikowska. An age-structured two-sex model in the space of radon measures: Well posedness. Kinetic and Related Models, 2012, 5 (4) : 873-900. doi: 10.3934/krm.2012.5.873

[3]

Gigi Thomas, Edward M. Lungu. A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences & Engineering, 2010, 7 (4) : 871-904. doi: 10.3934/mbe.2010.7.871

[4]

Chibueze Christian Okeke, Abdulmalik Usman Bello, Lateef Olakunle Jolaoso, Kingsley Chimuanya Ukandu. Inertial method for split null point problems with pseudomonotone variational inequality problems. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021037

[5]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022045

[6]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[7]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[8]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021046

[9]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[10]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control and Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031

[11]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[12]

Jianquan Li, Xiaoqin Wang, Xiaolin Lin. Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1425-1434. doi: 10.3934/mbe.2018065

[13]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[14]

Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004

[15]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[16]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[17]

Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623

[18]

Habib ur Rehman, Poom Kumam, Yusuf I. Suleiman, Widaya Kumam. An adaptive block iterative process for a class of multiple sets split variational inequality problems and common fixed point problems in Hilbert spaces. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022007

[19]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control and Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[20]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure and Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (296)
  • HTML views (243)
  • Cited by (0)

Other articles
by authors

[Back to Top]