doi: 10.3934/mcrf.2021054
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Commutative properties for conservative space-time DG discretizations of optimal control problems involving the viscous Burgers equation

Department of Mathematics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany

* Corresponding author: Xenia Kerkhoff

Received  March 2021 Revised  July 2021 Early access October 2021

We consider one-dimensional distributed optimal control problems with the state equation being given by the viscous Burgers equation. We discretize using a space-time discontinuous Galerkin approach. We use upwind flux in time and the symmetric interior penalty approach for discretizing the viscous term. Our focus is on the discretization of the convection terms. We aim for using conservative discretizations for the convection terms in both the state and the adjoint equation, while ensuring that the approaches of discretize-then-optimize and optimize-then-discretize commute. We show that this is possible if the arising source term in the adjoint equation is discretized properly, following the ideas of well-balanced discretizations for balance laws. We support our findings by numerical results.

Citation: Xenia Kerkhoff, Sandra May. Commutative properties for conservative space-time DG discretizations of optimal control problems involving the viscous Burgers equation. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2021054
References:
[1]

T. Akman and B. Karasözen, Variational time discretization methods for optimal control problems governed by diffusion-convection-reaction equations, Comput. Appl. Math., 272 (2014), 41-56.  doi: 10.1016/j.cam.2014.05.002.

[2]

N. AllahverdiA. Pozo and E. Zuazua, Numerical aspects of large-time optimal control of Burgers equation, ESAIM Math. Model. Numer. Anal., 50 (2016), 1371-1401.  doi: 10.1051/m2an/2015076.

[3]

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.  doi: 10.1137/0719052.

[4]

G. Chen and S. Collis, Optimal control for Burgers flow using the discontinuous Galerkin method, AIAA Region IV Student Paper Conference, 2003.

[5]

A. ChertockA. Kurganov and T. Wu, Operator splitting based central-upwind schemes for the shallow water equations with moving bottom topography, Commun. Math. Sci., 18 (2020), 2149-2168.  doi: 10.4310/CMS.2020.v18.n8.a3.

[6]

B. Cockburn, An introduction to the discontinuous Galerkin Method for convection-dominated problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997), Lecture Notes in Math., 1697 (1998), 151-268.  doi: 10.1007/BFb0096353.

[7]

J. C. de los Reyes and K. Kunisch, A comparison of algorithms for control constrained optimal control of the Burgers equation, Calcolo, 41 (2004), 203-225.  doi: 10.1007/s10092-004-0092-7.

[8]

V. Dolejší and M. Feistauer, Discontinuous Galerkin Methods, Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics, 48. Springer, Cham, 2015. doi: 10.1007/978-3-319-19267-3.

[9]

K. T. Elgindy and B. Karasözen, Distributed optimal control of viscous Burgers' equation via a high-order, linearization, integral, nodal discontinuous Gegenbauer-Galerkin method, Optimal Control Appl. Methods, 41 (2020), 253-277.  doi: 10.1002/oca.2541.

[10]

B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp., 36 (1981), 321-351.  doi: 10.1090/S0025-5718-1981-0606500-X.

[11]

L. Failer, Optimal Control of Time-Dependent Nonlinear Fluid-Structure Interaction, PhD thesis, Technical University of Munich, Munich, 2017.

[12]

M. FeistauerV. KučeraK. Najzar and J. Prokopová, Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math., 117 (2011), 251-288.  doi: 10.1007/s00211-010-0348-x.

[13]

G. GassnerA. Winters and D. Kopriva, A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272 (2016), 291-308.  doi: 10.1016/j.amc.2015.07.014.

[14]

J. Greenberg and A. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16.  doi: 10.1137/0733001.

[15]

J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Texts in Applied Mathematics, 54. Springer, New York, 2008. doi: 10.1007/978-0-387-72067-8.

[16]

A. Hiltebrand and S. May, Entropy stable spacetime discontinuous Galerkin methods for the two-dimensional compressible Navier-Stokes equations, Commun. Math. Sci., 16 (2018), 2095-2124.  doi: 10.4310/CMS.2018.v16.n8.a3.

[17]

A. Hiltebrand and S. Mishra, Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography, Netw. Heterog. Media, 11 (2016), 145-162.  doi: 10.3934/nhm.2016.11.145.

[18]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152. Springer, Heidelberg, 2015. doi: 10.1007/978-3-662-47507-2.

[19]

L. I. IgnatA. Pozo and E. Zuazua, Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws, Math. Comp., 84 (2015), 1633-1662.  doi: 10.1090/S0025-5718-2014-02915-3.

[20]

K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), 345-371.  doi: 10.1023/A:1021732508059.

[21] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.  doi: 10.1017/CBO9780511791253.
[22]

D. Leykekhman, Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems, J. Sci. Comput., 53 (2012), 483-511.  doi: 10.1007/s10915-012-9582-y.

[23]

S. May, Spacetime discontinuous Galerkin methods for solving convection-diffusion systems, ESAIM Math. Model. Numer. Anal., 51 (2017), 1755-1781.  doi: 10.1051/m2an/2017001.

[24]

S. NoelleY. Xing and C.-W. Shu, High-order well-balanced schemes, Numerical methods for Balance Laws, Quad. Mat., Dept. Math., Seconda Univ. Napoli, Caserta, 24 (2009), 1-66. 

[25]

J. Pfefferer, Numerical Analysis for Elliptic Neumann Boundary Control Problems on Polygonal Domains, PhD thesis, Bundeswehr University Munich, Munich, 2014.

[26]

W. J. Rider and R. B. Lowrie, The use of classical Lax-Friedrichs Riemann solvers with discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids, 40 (2002), 479-486.  doi: 10.1002/fld.334.

[27]

S. Volkwein, Mesh-Independence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Problems for the Burgers Equation, PhD thesis, Technical University of Berlin, Berlin, 1997.

[28]

S. Volkwein, Distributed control problems for the Burgers equation, Comput. Optim. Appl., 18 (2001), 115-140.  doi: 10.1023/A:1008770404256.

[29]

L. WilcoxG. StadlerT. Bui-Thanh and O. Ghattas, Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method, J. Sci. Comput., 63 (2015), 138-162.  doi: 10.1007/s10915-014-9890-5.

[30]

F. Yilmaz and B. Karasözen, Solving optimal control problems for the unsteady Burgers equation in COMSOL Multiphysics, J. Comput. Appl. Math., 235 (2011), 4839-4850.  doi: 10.1016/j.cam.2011.01.002.

show all references

References:
[1]

T. Akman and B. Karasözen, Variational time discretization methods for optimal control problems governed by diffusion-convection-reaction equations, Comput. Appl. Math., 272 (2014), 41-56.  doi: 10.1016/j.cam.2014.05.002.

[2]

N. AllahverdiA. Pozo and E. Zuazua, Numerical aspects of large-time optimal control of Burgers equation, ESAIM Math. Model. Numer. Anal., 50 (2016), 1371-1401.  doi: 10.1051/m2an/2015076.

[3]

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.  doi: 10.1137/0719052.

[4]

G. Chen and S. Collis, Optimal control for Burgers flow using the discontinuous Galerkin method, AIAA Region IV Student Paper Conference, 2003.

[5]

A. ChertockA. Kurganov and T. Wu, Operator splitting based central-upwind schemes for the shallow water equations with moving bottom topography, Commun. Math. Sci., 18 (2020), 2149-2168.  doi: 10.4310/CMS.2020.v18.n8.a3.

[6]

B. Cockburn, An introduction to the discontinuous Galerkin Method for convection-dominated problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997), Lecture Notes in Math., 1697 (1998), 151-268.  doi: 10.1007/BFb0096353.

[7]

J. C. de los Reyes and K. Kunisch, A comparison of algorithms for control constrained optimal control of the Burgers equation, Calcolo, 41 (2004), 203-225.  doi: 10.1007/s10092-004-0092-7.

[8]

V. Dolejší and M. Feistauer, Discontinuous Galerkin Methods, Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics, 48. Springer, Cham, 2015. doi: 10.1007/978-3-319-19267-3.

[9]

K. T. Elgindy and B. Karasözen, Distributed optimal control of viscous Burgers' equation via a high-order, linearization, integral, nodal discontinuous Gegenbauer-Galerkin method, Optimal Control Appl. Methods, 41 (2020), 253-277.  doi: 10.1002/oca.2541.

[10]

B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp., 36 (1981), 321-351.  doi: 10.1090/S0025-5718-1981-0606500-X.

[11]

L. Failer, Optimal Control of Time-Dependent Nonlinear Fluid-Structure Interaction, PhD thesis, Technical University of Munich, Munich, 2017.

[12]

M. FeistauerV. KučeraK. Najzar and J. Prokopová, Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math., 117 (2011), 251-288.  doi: 10.1007/s00211-010-0348-x.

[13]

G. GassnerA. Winters and D. Kopriva, A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272 (2016), 291-308.  doi: 10.1016/j.amc.2015.07.014.

[14]

J. Greenberg and A. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16.  doi: 10.1137/0733001.

[15]

J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Texts in Applied Mathematics, 54. Springer, New York, 2008. doi: 10.1007/978-0-387-72067-8.

[16]

A. Hiltebrand and S. May, Entropy stable spacetime discontinuous Galerkin methods for the two-dimensional compressible Navier-Stokes equations, Commun. Math. Sci., 16 (2018), 2095-2124.  doi: 10.4310/CMS.2018.v16.n8.a3.

[17]

A. Hiltebrand and S. Mishra, Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography, Netw. Heterog. Media, 11 (2016), 145-162.  doi: 10.3934/nhm.2016.11.145.

[18]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152. Springer, Heidelberg, 2015. doi: 10.1007/978-3-662-47507-2.

[19]

L. I. IgnatA. Pozo and E. Zuazua, Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws, Math. Comp., 84 (2015), 1633-1662.  doi: 10.1090/S0025-5718-2014-02915-3.

[20]

K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), 345-371.  doi: 10.1023/A:1021732508059.

[21] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.  doi: 10.1017/CBO9780511791253.
[22]

D. Leykekhman, Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems, J. Sci. Comput., 53 (2012), 483-511.  doi: 10.1007/s10915-012-9582-y.

[23]

S. May, Spacetime discontinuous Galerkin methods for solving convection-diffusion systems, ESAIM Math. Model. Numer. Anal., 51 (2017), 1755-1781.  doi: 10.1051/m2an/2017001.

[24]

S. NoelleY. Xing and C.-W. Shu, High-order well-balanced schemes, Numerical methods for Balance Laws, Quad. Mat., Dept. Math., Seconda Univ. Napoli, Caserta, 24 (2009), 1-66. 

[25]

J. Pfefferer, Numerical Analysis for Elliptic Neumann Boundary Control Problems on Polygonal Domains, PhD thesis, Bundeswehr University Munich, Munich, 2014.

[26]

W. J. Rider and R. B. Lowrie, The use of classical Lax-Friedrichs Riemann solvers with discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids, 40 (2002), 479-486.  doi: 10.1002/fld.334.

[27]

S. Volkwein, Mesh-Independence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Problems for the Burgers Equation, PhD thesis, Technical University of Berlin, Berlin, 1997.

[28]

S. Volkwein, Distributed control problems for the Burgers equation, Comput. Optim. Appl., 18 (2001), 115-140.  doi: 10.1023/A:1008770404256.

[29]

L. WilcoxG. StadlerT. Bui-Thanh and O. Ghattas, Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method, J. Sci. Comput., 63 (2015), 138-162.  doi: 10.1007/s10915-014-9890-5.

[30]

F. Yilmaz and B. Karasözen, Solving optimal control problems for the unsteady Burgers equation in COMSOL Multiphysics, J. Comput. Appl. Math., 235 (2011), 4839-4850.  doi: 10.1016/j.cam.2011.01.002.

Figure 1.  Test 1: Results for gradient test. The $ x- $axis denotes $ \frac{1}{\rho} $ with $ \rho $ being the step length in the difference quotient, the $ y- $axis denotes the error of the gradient as given by (24)
Figure 2.  Test 2: Computed solution $ (q^h,u^h) $ for $ p = 2 $ and $ N = 160 $. Left column: control $ q^h $, right column: state $ u^h $. The second row shows the solutions $ q^h(\cdot,t) $ and $ u^h(\cdot,t) $ at time instances $ t = 0.25 $, $ t = 0.5 $, and $ t = 0.75 $ as a function of the space coordinate $ x $
Table 1.  Test 1: Errors and orders of convergence for $ \varepsilon = 10^{-3} $
$ p $ $ N $ error $ u $ order error $ q $ order error $ z $ order iter. gradient
OD-wo
1 40 2.35e-04 1.93e-03 2.31e-04 25 4.66e-05
1 80 5.43e-05 2.11 5.09e-04 1.92 7.36e-05 1.65 28 1.97e-05
1 160 1.28e-05 2.08 1.44e-04 1.82 2.48e-05 1.57 31 7.11e-06
1 320 3.19e-06 2.01 4.05e-05 1.83 8.22e-06 1.59 36 2.81e-06
2 20 2.31e-05 1.67e-04 1.67e-05 49 2.18e-07
2 40 2.95e-06 2.97 2.05e-05 3.03 2.06e-06 3.02 52 3.00e-08
2 80 3.41e-07 3.11 2.61e-06 2.98 2.61e-07 2.98 54 9.51e-09
2 160 4.65e-08 2.87 3.93e-07 2.73 3.47e-08 2.91 54 9.51e-09
3 10 4.15e-06 4.97e-05 4.96e-06 54 9.51e-09
3 20 1.81e-07 4.52 3.02e-06 4.04 3.00e-07 4.05 54 9.51e-09
3 40 2.97e-08 2.61 2.86e-07 3.40 1.70e-08 4.14 54 9.51e-09
3 80 2.62e-08 0.18 2.07e-07 0.47 3.33e-09 2.35 54 9.51e-09
OD-w
1 40 2.31e-04 1.87e-03 1.87e-04 54 9.51e-09
1 80 5.05e-05 2.19 4.63e-04 2.02 4.63e-05 2.02 54 9.51e-09
1 160 9.91e-06 2.35 1.15e-04 2.01 1.15e-05 2.01 54 9.51e-09
1 320 1.72e-06 2.52 2.87e-05 2.01 2.87e-06 2.01 54 9.51e-09
2 20 2.26e-05 1.67e-04 3.07 1.67e-05 54 9.51e-09
2 40 2.88e-06 2.98 2.01e-05 3.06 2.01e-06 3.06 54 9.51e-09
2 80 3.23e-07 3.15 2.45e-06 3.04 2.44e-07 3.04 54 9.51e-09
2 160 4.35e-08 2.89 3.62e-07 2.76 3.01e-08 3.02 54 9.51e-09
3 10 4.16e-06 4.96e-05 4.96e-06 54 9.51e-09
3 20 1.73e-07 4.59 2.99e-06 4.05 2.98e-07 4.05 54 9.51e-09
3 40 2.66e-08 2.70 2.65e-07 3.49 1.72e-08 4.11 54 9.51e-09
3 80 2.59e-08 0.04 2.05e-07 0.37 3.52e-09 2.29 54 9.51e-09
$ p $ $ N $ error $ u $ order error $ q $ order error $ z $ order iter. gradient
OD-wo
1 40 2.35e-04 1.93e-03 2.31e-04 25 4.66e-05
1 80 5.43e-05 2.11 5.09e-04 1.92 7.36e-05 1.65 28 1.97e-05
1 160 1.28e-05 2.08 1.44e-04 1.82 2.48e-05 1.57 31 7.11e-06
1 320 3.19e-06 2.01 4.05e-05 1.83 8.22e-06 1.59 36 2.81e-06
2 20 2.31e-05 1.67e-04 1.67e-05 49 2.18e-07
2 40 2.95e-06 2.97 2.05e-05 3.03 2.06e-06 3.02 52 3.00e-08
2 80 3.41e-07 3.11 2.61e-06 2.98 2.61e-07 2.98 54 9.51e-09
2 160 4.65e-08 2.87 3.93e-07 2.73 3.47e-08 2.91 54 9.51e-09
3 10 4.15e-06 4.97e-05 4.96e-06 54 9.51e-09
3 20 1.81e-07 4.52 3.02e-06 4.04 3.00e-07 4.05 54 9.51e-09
3 40 2.97e-08 2.61 2.86e-07 3.40 1.70e-08 4.14 54 9.51e-09
3 80 2.62e-08 0.18 2.07e-07 0.47 3.33e-09 2.35 54 9.51e-09
OD-w
1 40 2.31e-04 1.87e-03 1.87e-04 54 9.51e-09
1 80 5.05e-05 2.19 4.63e-04 2.02 4.63e-05 2.02 54 9.51e-09
1 160 9.91e-06 2.35 1.15e-04 2.01 1.15e-05 2.01 54 9.51e-09
1 320 1.72e-06 2.52 2.87e-05 2.01 2.87e-06 2.01 54 9.51e-09
2 20 2.26e-05 1.67e-04 3.07 1.67e-05 54 9.51e-09
2 40 2.88e-06 2.98 2.01e-05 3.06 2.01e-06 3.06 54 9.51e-09
2 80 3.23e-07 3.15 2.45e-06 3.04 2.44e-07 3.04 54 9.51e-09
2 160 4.35e-08 2.89 3.62e-07 2.76 3.01e-08 3.02 54 9.51e-09
3 10 4.16e-06 4.96e-05 4.96e-06 54 9.51e-09
3 20 1.73e-07 4.59 2.99e-06 4.05 2.98e-07 4.05 54 9.51e-09
3 40 2.66e-08 2.70 2.65e-07 3.49 1.72e-08 4.11 54 9.51e-09
3 80 2.59e-08 0.04 2.05e-07 0.37 3.52e-09 2.29 54 9.51e-09
Table 2.  Test 1: Errors and orders of convergence for $ \varepsilon = 10^{-5} $
$ p $ $ N $ error $ u $ order error $ q $ order error $ z $ order iter. gradient
OD-wo
1 40 2.79e-04 1.97e-03 2.47e-04 24 5.33e-05
1 80 7.51e-05 1.89 5.51e-04 1.84 9.20e-05 1.42 27 2.81e-05
1 160 2.28e-05 1.72 1.93e-04 1.51 4.08e-05 1.18 29 1.26e-05
1 320 8.15e-06 1.49 7.90e-05 1.29 1.99e-05 1.04 33 7.11e-06
2 20 2.52e-05 1.72e-04 1.72e-05 44 2.25e-07
2 40 3.98e-06 2.66 2.18e-05 2.98 2.18e-06 2.97 51 4.63e-08
2 80 6.28e-07 2.67 3.09e-06 2.82 3.10e-07 2.82 54 9.51e-09
2 160 1.01e-07 2.64 5.60e-07 2.46 5.42e-08 2.51 54 9.51e-09
3 10 4.63e-06 4.87e-05 4.87e-06 54 9.51e-09
3 20 2.76e-07 4.07 3.12e-06 3.96 3.08e-07 3.98 54 9.51e-09
3 40 3.58e-08 2.94 3.19e-07 3.29 1.87e-08 4.04 54 9.51e-09
3 80 2.68e-08 0.42 2.12e-07 0.59 2.94e-09 2.67 54 9.51e-09
OD-w
1 40 2.74e-04 1.89e-03 1.89e-04 54 9.51e-09
1 80 6.99e-05 1.97 4.68e-04 2.01 4.68e-05 2.01 54 9.51e-09
1 160 1.76e-05 1.99 1.17e-04 2.01 1.17e-05 2.01 54 9.51e-09
1 320 4.39e-06 2.00 2.91e-05 2.00 2.91e-06 2.00 54 9.51e-09
2 20 2.46e-05 1.72e-04 1.72e-05 54 9.51e-09
2 40 3.84e-06 2.68 2.12e-05 3.02 2.12e-06 3.02 54 9.51e-09
2 80 5.86e-07 2.71 2.65e-06 3.00 2.65e-07 3.00 54 9.51e-09
2 160 8.82e-08 2.73 3.89e-07 2.77 3.33e-08 2.99 54 9.51e-09
3 10 4.65e-06 4.85e-05 4.85e-06 54 9.51e-09
3 20 2.65e-07 4.13 3.05e-06 3.99 3.04e-07 4.00 54 9.51e-09
3 40 2.96e-08 3.16 2.75e-07 3.47 1.86e-08 4.03 54 9.51e-09
3 80 2.59e-08 0.19 2.05e-07 0.42 3.53e-09 2.40 54 9.51e-09
$ p $ $ N $ error $ u $ order error $ q $ order error $ z $ order iter. gradient
OD-wo
1 40 2.79e-04 1.97e-03 2.47e-04 24 5.33e-05
1 80 7.51e-05 1.89 5.51e-04 1.84 9.20e-05 1.42 27 2.81e-05
1 160 2.28e-05 1.72 1.93e-04 1.51 4.08e-05 1.18 29 1.26e-05
1 320 8.15e-06 1.49 7.90e-05 1.29 1.99e-05 1.04 33 7.11e-06
2 20 2.52e-05 1.72e-04 1.72e-05 44 2.25e-07
2 40 3.98e-06 2.66 2.18e-05 2.98 2.18e-06 2.97 51 4.63e-08
2 80 6.28e-07 2.67 3.09e-06 2.82 3.10e-07 2.82 54 9.51e-09
2 160 1.01e-07 2.64 5.60e-07 2.46 5.42e-08 2.51 54 9.51e-09
3 10 4.63e-06 4.87e-05 4.87e-06 54 9.51e-09
3 20 2.76e-07 4.07 3.12e-06 3.96 3.08e-07 3.98 54 9.51e-09
3 40 3.58e-08 2.94 3.19e-07 3.29 1.87e-08 4.04 54 9.51e-09
3 80 2.68e-08 0.42 2.12e-07 0.59 2.94e-09 2.67 54 9.51e-09
OD-w
1 40 2.74e-04 1.89e-03 1.89e-04 54 9.51e-09
1 80 6.99e-05 1.97 4.68e-04 2.01 4.68e-05 2.01 54 9.51e-09
1 160 1.76e-05 1.99 1.17e-04 2.01 1.17e-05 2.01 54 9.51e-09
1 320 4.39e-06 2.00 2.91e-05 2.00 2.91e-06 2.00 54 9.51e-09
2 20 2.46e-05 1.72e-04 1.72e-05 54 9.51e-09
2 40 3.84e-06 2.68 2.12e-05 3.02 2.12e-06 3.02 54 9.51e-09
2 80 5.86e-07 2.71 2.65e-06 3.00 2.65e-07 3.00 54 9.51e-09
2 160 8.82e-08 2.73 3.89e-07 2.77 3.33e-08 2.99 54 9.51e-09
3 10 4.65e-06 4.85e-05 4.85e-06 54 9.51e-09
3 20 2.65e-07 4.13 3.05e-06 3.99 3.04e-07 4.00 54 9.51e-09
3 40 2.96e-08 3.16 2.75e-07 3.47 1.86e-08 4.03 54 9.51e-09
3 80 2.59e-08 0.19 2.05e-07 0.42 3.53e-09 2.40 54 9.51e-09
Table 3.  Test 2: Values and orders of convergence (computed using values from 3 subsequent meshes) for functional $ J $ for $ p = 1 $
OD-w OD-wo
N value $ J $ order iter. gradient value $ J $ order iter. gradient
20 0.10640082692 - 44 8.58e-08 0.10641958284 - 11 2.10e-03
40 0.10818515778 - 44 7.94e-08 0.10819225166 - 14 1.02e-03
80 0.10855578246 2.27 43 8.03e-08 0.10855750188 2.28 18 3.44e-04
160 0.10862035158 2.52 43 8.00e-08 0.10862054051 2.53 22 1.09e-04
OD-w OD-wo
N value $ J $ order iter. gradient value $ J $ order iter. gradient
20 0.10640082692 - 44 8.58e-08 0.10641958284 - 11 2.10e-03
40 0.10818515778 - 44 7.94e-08 0.10819225166 - 14 1.02e-03
80 0.10855578246 2.27 43 8.03e-08 0.10855750188 2.28 18 3.44e-04
160 0.10862035158 2.52 43 8.00e-08 0.10862054051 2.53 22 1.09e-04
Table 4.  Test 2: Errors and orders of convergence for the control $ q $ for $ p = 1 $
OD-w OD-wo
N error $ q $ order iter. gradient error $ q $ order iter. gradient
20 1.67e-02 - 44 8.58e-08 1.77e-02 - 11 2.10e-03
40 4.56e-03 1.87 44 7.94e-08 6.10e-03 1.54 14 1.02e-03
80 1.47e-03 1.64 43 8.03e-08 2.83e-03 1.11 18 3.44e-04
160 4.20e-04 1.80 43 8.00e-08 1.00e-03 1.50 22 1.09e-04
OD-w OD-wo
N error $ q $ order iter. gradient error $ q $ order iter. gradient
20 1.67e-02 - 44 8.58e-08 1.77e-02 - 11 2.10e-03
40 4.56e-03 1.87 44 7.94e-08 6.10e-03 1.54 14 1.02e-03
80 1.47e-03 1.64 43 8.03e-08 2.83e-03 1.11 18 3.44e-04
160 4.20e-04 1.80 43 8.00e-08 1.00e-03 1.50 22 1.09e-04
[1]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic and Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[2]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic and Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[3]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[4]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[5]

Wasim Akram, Debanjana Mitra. Local stabilization of viscous Burgers equation with memory. Evolution Equations and Control Theory, 2022, 11 (3) : 939-973. doi: 10.3934/eect.2021032

[6]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[7]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319

[9]

François Gay-Balmaz, Tudor S. Ratiu. Clebsch optimal control formulation in mechanics. Journal of Geometric Mechanics, 2011, 3 (1) : 41-79. doi: 10.3934/jgm.2011.3.41

[10]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[11]

Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793

[12]

Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021220

[13]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29 (3) : 2375-2389. doi: 10.3934/era.2020120

[16]

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727

[17]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[18]

Enric Fossas, Albert Corominas. Using optimal control to optimize the extraction rate of a durable non-renewable resource with a monopolistic primary supplier. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021110

[19]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[20]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems and Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (267)
  • HTML views (216)
  • Cited by (0)

Other articles
by authors

[Back to Top]