\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Eigenvalues of stochastic Hamiltonian systems with boundary conditions and its application

  • * Corresponding author: Guangdong Jing

    * Corresponding author: Guangdong Jing 

The first author is supported by NNSFC grant 11871308; The second author is supported by NNSFC grant 11471189, 11871308

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we solve the eigenvalue problem of stochastic Hamiltonian system with boundary conditions. Firstly, we extend the results in Peng [12] from time-invariant case to time-dependent case, proving the existence of a series of eigenvalues $ \{\lambda_m\} $ and construct corresponding eigenfunctions. Moreover, the order of growth for these $ \{\lambda_m\} $ are obtained: $ \lambda_m\sim m^2 $, as $ m\rightarrow +\infty $. As applications, we give an explicit estimation formula about the statistic period of solutions of Forward-Backward SDEs. Besides, by a meticulous example we show the subtle situation in time-dependent case that some eigenvalues appear when the solution of the associated Riccati equation does not blow-up, which does not happen in time-invariant case.

    Mathematics Subject Classification: Primary: 60H10, 34B99; Secondary: 34F05, 34L15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. Antonelli, Backward-forward stochastic differential equations, Ann. Appl. Probab., 3 (1993), 777-793. 
    [2] A. Bensoussan, Lectures on stochastic control, Nonlinear Filtering and Stochastic Control (Cortona, 1981), 1–62, Lecture Notes in Math., 972, Springer, Berlin-New York, 1982.
    [3] J.-M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.
    [4] F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Process. Appl., 99 (2002), 209-286.  doi: 10.1016/S0304-4149(02)00085-6.
    [5] Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 103 (1995), 273-283.  doi: 10.1007/BF01204218.
    [6] G. Jing and P. Wang, A note on "Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions", C. R. Math. Acad. Sci. Paris, 359 (2021), 99-104.  doi: 10.5802/crmath.103.
    [7] J. MaP. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly – a four step scheme, Probab. Theory Related Fields, 98 (1994), 339-359.  doi: 10.1007/BF01192258.
    [8] J. MaZ. WuD. Zhang and J. Zhang, On well-posedness of forward-backward SDEs – a unified approach, Ann. Appl. Probab., 25 (2015), 2168-2214.  doi: 10.1214/14-AAP1046.
    [9] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications, , Springer-Verlag, Berlin, 1999.
    [10] E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999), 123-150.  doi: 10.1007/s004409970001.
    [11] S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144.  doi: 10.1007/BF01195978.
    [12] S. Peng, Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions, Stochastic Process. Appl., 88 (2000), 259-290.  doi: 10.1016/S0304-4149(00)00005-3.
    [13] S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37 (1999), 825-843.  doi: 10.1137/S0363012996313549.
    [14] H. Wang and Z. Wu, Eigenvalues of stochastic Hamiltonian systems driven by Poisson process with boundary conditions, Bound. Value Probl., 2017, Paper No. 164, 20 pp. doi: 10.1186/s13661-017-0896-4.
    [15] J. Yong, Forward-backward stochastic differential equations with mixed initial-terminal conditions, Trans. Amer. Math. Soc., 362 (2010), 1047-1096.  doi: 10.1090/S0002-9947-09-04896-X.
    [16] J. Yong, Linear forward-backward stochastic differential equations, Appl. Math. Optim., 39 (1999), 93-119.  doi: 10.1007/s002459900100.
    [17] J. Yong, Linear forward-backward stochastic differential equations with random coefficients, Probab. Theory Related Fields, 135 (2006), 53-83.  doi: 10.1007/s00440-005-0452-5.
    [18] J. Zhang, Backward Stochastic Differential Equations. From Linear to Fully Nonlinear Theory, Springer, New York, 2017. doi: 10.1007/978-1-4939-7256-2.
    [19] J. Zhang, The wellposedness of FBSDEs, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 927-940.  doi: 10.3934/dcdsb.2006.6.927.
  • 加载中
SHARE

Article Metrics

HTML views(649) PDF downloads(447) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return