[1]
|
Z. Achouri, N. E. Amroun and A. Benaissa, The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type, Math. Methods Appl. Sci., 40 (2017), 3837-3854.
doi: 10.1002/mma.4267.
|
[2]
|
R. A. Adams, Sobolev Spaces / Robert A. Adams, Academic Press New York, 1975.
|
[3]
|
M. Akil, H. Badawi, S. Nicaise and A. Wehbe, On the stability of Bresse system with one discontinuous local internal kelvin-voigt damping on the axial force, Z. Angew. Math. Phys., 72 (2021), Paper No. 126, 27 pp.
doi: 10.1007/s00033-021-01558-y.
|
[4]
|
M. Akil, H. Badawi and A. Wehbe, Stability results of a singular local interaction elastic/viscoelastic coupled wave equations with time delay, Commun. Pure Appl. Anal., 20 (2021), 2991-3028.
doi: 10.3934/cpaa.2021092.
|
[5]
|
M. Akil, Y. Chitour, M. Ghader and A. Wehbe, Stability and exact controllability of a timoshenko system with only one fractional damping on the boundary, Asymptotic Analysis, 119 (2020), 221-280.
doi: 10.3233/ASY-191574.
|
[6]
|
M. Akil and A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Math. Control Relat. Fields, 9 (2019), 97-116.
doi: 10.3934/mcrf.2019005.
|
[7]
|
H. Allouni, M. Kesri and A. Benaissa, On the asymptotic behaviour of two coupled strings through a fractional joint damper, Rend. Circ. Mat. Palermo (2), 69 (2020), 613-640.
doi: 10.1007/s12215-019-00423-2.
|
[8]
|
M. Alves, J. M. Rivera, M. Sepúlveda and O. V. Villagrán, The lack of exponential stability in certain transmission problems with localized kelvin–voigt dissipation, SIAM J. Appl. Math., 74, (2014), 345–365.
doi: 10.1137/130923233.
|
[9]
|
K. Ammari, H. Fathi and L. Robbiano, Fractional-feedback stabilization for a class of evolution systems, J. Differential Equations, 268 (2020), 5751-5791.
doi: 10.1016/j.jde.2019.11.022.
|
[10]
|
K. Ammari, M. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Netw. Heterog. Media, 4 (2009), 19-34.
doi: 10.3934/nhm.2009.4.19.
|
[11]
|
K. Ammari, Z. Liu and F. Shel, Stability of the wave equations on a tree with local Kelvin-Voigt damping, Semigroup Forum, 100 (2020), 364-382.
doi: 10.1007/s00233-019-10064-7.
|
[12]
|
K. Ammari and M. Mehrenberger, Study of the nodal feedback stabilization of a string-beams network, J. Appl. Math. Comput., 36 (2011), 441-458.
doi: 10.1007/s12190-010-0412-9.
|
[13]
|
K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differential Equations, 249 (2010), 707-727.
doi: 10.1016/j.jde.2010.03.007.
|
[14]
|
K. Ammari and G. Vodev, Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation, Cubo, 11 (2009), 39-49.
|
[15]
|
W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3.
|
[16]
|
R. L. Bagley and P. J. Torvik, Fractional calculus - a different approach to the analysis of viscoelastically damped structures, AIAA Journal, 21 (1983), 741-748.
doi: 10.2514/3.8142.
|
[17]
|
R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27 (1983), 201-210.
doi: 10.1122/1.549724.
|
[18]
|
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055.
|
[19]
|
J. Bartolomeo and R. Triggiani, Uniform energy decay rates for Euler-Bernoulli equations with feedback operators in the Dirichlet/Neumann boundary conditions, SIAM J. Math. Anal., 22 (1991), 46-71.
doi: 10.1137/0522004.
|
[20]
|
C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on {B}anach spaces, J. Evol. Equ., 8 (2008), 765-780.
doi: 10.1007/s00028-008-0424-1.
|
[21]
|
S. K. Biswas and N. U. Ahmed, Optimal control of large space structures governed by a coupled system of ordinary and partial differential equations, Math. Control. Signals Syst., 2 (1989), 1-18.
doi: 10.1007/BF02551358.
|
[22]
|
A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0.
|
[23]
|
M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophysical Journal, 13 (1967), 529-539.
|
[24]
|
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85.
|
[25]
|
G. Chen, M. C. Delfour, A. M. Krall and G. Payre, Modeling, stabilization and control of serially connected beams, SIAM J. Control Optim., 25, (1987), 526–546.
doi: 10.1137/0325029.
|
[26]
|
G. Chen, S. A. Fulling, F. J. Narcowich and S. Sun, Exponential decay of energy of evolution equations with locally distributed damping, SIAM J. Appl. Math., 51 (1991), 266-301.
doi: 10.1137/0151015.
|
[27]
|
S. Chen, K. Liu and Z. Liu, Spectrum and stability for elastic systems with global or local kelvin–voigt damping, SIAM J. Appl. Math., 59 (1999), 651-668.
doi: 10.1137/S0036139996292015.
|
[28]
|
R. Denk and F. Kammerlander, Exponential stability for a coupled system of damped-undamped plate equations, IMA J. Appl. Math., 83 (2018), 302-322.
doi: 10.1093/imamat/hxy002.
|
[29]
|
X. Fu and Q. Lu, Stabilization of the weakly coupled wave-plate system with one internal damping, 2017.
|
[30]
|
B.-Z. Guo and H.-J. Ren, Stability and regularity transmission for coupled beam and wave equations through boundary weak connections, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 73, 29 pp.
doi: 10.1051/cocv/2019056.
|
[31]
|
Y.-P. Guo, J.-M. Wang and D.-X. Zhao, Energy decay estimates for a two-dimensional coupled wave-plate system with localized frictional damping, ZAMM Z. Angew. Math. Mech., 100 (2020), e201900030, 14 pp.
doi: 10.1002/zamm.201900030.
|
[32]
|
Z.-J. Han and Z. Liu, Regularity and stability of coupled plate equations with indirect structural or Kelvin-Voigt damping, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 51, 14 pp.
doi: 10.1051/cocv/2018060.
|
[33]
|
F. Hassine, Energy decay estimates of elastic transmission wave/beam systems with a local kelvin-voigt damping, International Journal of Control, (2015), 1–29.
|
[34]
|
F. Hassine, Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1757-1774.
doi: 10.3934/dcdsb.2016021.
|
[35]
|
F. L. Huang, On the mathematical model for linear elastic systems with analytic damping, SIAM J. Control Optim., 26 (1988), 714-724.
doi: 10.1137/0326041.
|
[36]
|
F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.
|
[37]
|
G. Ji and I. Lasiecka, Nonlinear boundary feedback stabilization for a semilinear Kirchhoff plate with dissipation acting only via moments-limiting behavior, J. Math. Anal. Appl., 229 (1999), 452-479.
doi: 10.1006/jmaa.1998.6170.
|
[38]
|
J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078.
|
[39]
|
J. E. Lagnese, Uniform boundary stabilization of homogeneous isotropic plates, Part of the Lecture Notes in Control and Information Sciences, (1987), 204–215.
doi: 10.1007/BFb0041992.
|
[40]
|
I. Lasiecka, Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary, J. Differential Equations, 79 (1989), 340-381.
doi: 10.1016/0022-0396(89)90107-1.
|
[41]
|
I. Lasiecka, Asymptotic behavior of solutions to plate equations with nonlinear dissipation occurring through shear forces and bending moments, Appl. Math. Optim., 21 (1990), 167-189.
doi: 10.1007/BF01445162.
|
[42]
|
J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747.
doi: 10.1051/cocv/2011168.
|
[43]
|
Y.-F. Li, Z.-J. Han and G.-Q. Xu, Explicit decay rate for coupled string-beam system with localized frictional damping, Appl. Math. Lett., 78 (2018), 51-58.
doi: 10.1016/j.aml.2017.11.003.
|
[44]
|
K. Liu and Z. Liu, Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping, SIAM J. Control Optim., 36 (1998), 1086-1098.
doi: 10.1137/S0363012996310703.
|
[45]
|
Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.
doi: 10.1007/s00033-004-3073-4.
|
[46]
|
Z. Liu and Q. Zhang, Stability of a string with local Kelvin–Voigt damping and nonsmooth coefficient at interface, SIAM J. Control Optim., 54 (2016), 1859-1871.
doi: 10.1137/15M1049385.
|
[47]
|
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, volume 398 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 1999.
|
[48]
|
M. Mainardi and E. Bonetti, The application of real-order derivatives in linear viscoelasticity, In H. Giesekus and M. F. Hibberd, editors, Progress and Trends in Rheology II, pages 64–67, Heidelberg, 1988. Steinkopff.
doi: 10.1007/978-3-642-49337-9_11.
|
[49]
|
D. Matignon and C. Prieur, Asymptotic stability of Webster-Lokshin equation, Math. Control Relat. Fields, 4 (2014), 481-500.
doi: 10.3934/mcrf.2014.4.481.
|
[50]
|
B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inform., 23 (2006), 237-257.
doi: 10.1093/imamci/dni056.
|
[51]
|
B. Mbodje and G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Trans. Automat. Control, 40 (1995), 378-382.
doi: 10.1109/9.341815.
|
[52]
|
L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 20 (1966), 733-737.
|
[53]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.
|
[54]
|
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of their Solution and some of their Applications, Mathematics in Science and Engineering. Academic Press, London, 1999.
|
[55]
|
J. Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.
doi: 10.2307/1999112.
|
[56]
|
C. A. Raposo, W. D. Bastos and J. A. J. Avila, A transmission problem for Euler-Bernoulli beam with Kelvin-Voigt damping, Appl. Math. Inf. Sci., 5 (2011), 17-28.
|
[57]
|
M. L. Santos and J. E. Muñoz Rivera, Analytic property of a coupled system of wave-plate type with thermal effect, Differential and Integral Equations, 24 (2011), 965-972.
|
[58]
|
L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 2012), 45–60.
doi: 10.3934/mcrf.2012.2.45.
|
[59]
|
P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.
doi: 10.1115/1.3167615.
|
[60]
|
A. Wehbe, I. Issa and M. Akil, Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients, Acta Appl. Math., 171 (2021), Paper No. 23, 46 pp.
doi: 10.1007/s10440-021-00384-8.
|
[61]
|
Q. Zhang, Exponential stability of an elastic string with local Kelvin-Voigt damping, Z. Angew. Math. Phys., 61 (2010), 1009-1015.
doi: 10.1007/s00033-010-0064-5.
|
[62]
|
X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Arch. Ration. Mech. Anal., 184 (2007), 49-120.
doi: 10.1007/s00205-006-0020-x.
|