• Previous Article
    Local controllability of the bilinear 1D Schrödinger equation with simultaneous estimates
  • MCRF Home
  • This Issue
  • Next Article
    Commutative properties for conservative space-time DG discretizations of optimal control problems involving the viscous Burgers equation
doi: 10.3934/mcrf.2022001
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Constructive exact control of semilinear 1D heat equations

Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France

* Corresponding author: Arnaud Münch

Received  March 2021 Revised  September 2021 Early access January 2022

Fund Project: The second author is supported by the french government research program "Investissements d'Avenir" through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25)

The exact distributed controllability of the semilinear heat equation $ \partial_{t}y-\Delta y + g(y) = f \,1_{\omega} $ posed over multi-dimensional and bounded domains, assuming that $ g\in C^1(\mathbb{R}) $ satisfies the growth condition $ \limsup_{r\to \infty} g(r)/ (\vert r\vert \ln^{3/2}\vert r\vert) = 0 $ has been obtained by Fernández-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. In the one dimensional setting, assuming that $ g^\prime $ does not grow faster than $ \beta \ln^{3/2}\vert r\vert $ at infinity for $ \beta>0 $ small enough and that $ g^\prime $ is uniformly Hölder continuous on $ \mathbb{R} $ with exponent $ p\in [0,1] $, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $ 1+p $ after a finite number of iterations.

Citation: Jérôme Lemoine, Arnaud Münch. Constructive exact control of semilinear 1D heat equations. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2022001
References:
[1]

M. BadraS. Ervedoza and S. Guerrero, Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 529-574.  doi: 10.1016/j.anihpc.2014.11.006.

[2]

V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim., 42 (2000), 73-89.  doi: 10.1007/s002450010004.

[3]

A. Bottois, J. Lemoine and A. Münch, Constructive exact control of semilinear multi-dimensional wave equations, Preprint. arXiv: 2101.06446.

[4]

F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, In CANUM 2012, 41e Congrès National d'Analyse Numérique, volume 41 of ESAIM Proc., 15–58. EDP Sci., Les Ulis, 2013. doi: 10.1051/proc/201341002.

[5]

F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1035-1078.  doi: 10.1016/j.anihpc.2013.07.011.

[6]

M. O. BristeauO. PironneauR. GlowinskiJ. Periaux and P. Perrier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. I. Least square formulations and conjugate gradient, Comput. Methods Appl. Mech. Engrg., 17 (1979), 619-657.  doi: 10.1016/0045-7825(79)90048-3.

[7]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors.

[8]

J.-M. Coron, Control and Nonlinearity, volume 136 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.

[9]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim., 43 (2004), 549-569.  doi: 10.1137/S036301290342471X.

[10]

P. Deuflhard, Newton Methods for Nonlinear Problems, volume 35 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2011. Affine invariance and adaptive algorithms, First softcover printing of the 2006 corrected printing. doi: 10.1007/978-3-642-23899-4.

[11]

A. DoubovaE. Fernández-CaraM. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.  doi: 10.1137/S0363012901386465.

[12]

T. DuyckaertsX. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.  doi: 10.1016/j.anihpc.2006.07.005.

[13]

S. Ervedoza, J. Lemoine and A. Münch, Exact controllability of semilinear heat equations through a constructive approach, Preprint, hal-03350534.

[14]

E. Fernández-Cara and A. Münch, Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods, Math. Control Relat. Fields, 2 (2012), 217-246.  doi: 10.3934/mcrf.2012.2.217.

[15]

E. Fernández-Cara and A. Münch, Strong convergent approximations of null controls for the 1D heat equation, SeMA J., 61 (2013), 49-78.  doi: 10.1007/s40324-013-0001-6.

[16]

E. Fernández-CaraA. Münch and D. A. Souza, On the numerical controllability of the two-dimensional heat, Stokes and Navier-Stokes equations, J. Sci. Comput., 70 (2017), 819-858.  doi: 10.1007/s10915-016-0266-x.

[17]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. 

[18]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.  doi: 10.1016/s0294-1449(00)00117-7.

[19]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, volume 34 of Lecture Notes Series, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[20]

R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems, volume 117 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2008. A numerical approach. doi: 10.1017/CBO9780511721595.

[21]

A. A. Lacey, Global blow-up of a nonlinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 161-167.  doi: 10.1017/S0308210500019120.

[22]

K. Le Balc'h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., 135 (2020), 103-139.  doi: 10.1016/j.matpur.2019.10.009.

[23]

J. Lemoine, I. Marín-Gayte and A. Münch, Approximation of null controls for semilinear heat equations using a least-squares approach, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 63, 28 pp. doi: 10.1051/cocv/2021062.

[24]

J. Lemoine and A. Münch, A fully space-time least-squares method for the unsteady Navier-Stokes system, J. Math. Fluid Mech., 23 (2021), Paper No. 102, 38 pp. doi: 10.1007/s00021-021-00627-6.

[25]

J. Lemoine and A. Münch, Resolution of the implicit Euler scheme for the Navier-Stokes equation through a least-squares method, Numer. Math., 147 (2021), 349-391.  doi: 10.1007/s00211-021-01171-1.

[26]

J. LemoineA. Münch and P. Pedregal, Analysis of continuous $H^{-1}$-least-squares approaches for the steady Navier-Stokes system, Appl. Math. Optim., 83 (2021), 461-488.  doi: 10.1007/s00245-019-09554-5.

[27]

A. Münch, A least-squares formulation for the approximation of controls for the Stokes system, Math. Control Signals Systems, 27 (2015), 49-75.  doi: 10.1007/s00498-014-0134-x.

[28]

A. Münch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European J. Appl. Math., 25 (2014), 277-306.  doi: 10.1017/S0956792514000023.

[29]

A. Münch and D. A. Souza, A mixed formulation for the direct approximation of $L^2$-weighted controls for the linear heat equation, Adv. Comput. Math., 42 (2016), 85-125.  doi: 10.1007/s10444-015-9412-5.

[30]

A. Münch and E. Trélat, Constructive exact control of semilinear 1d wave equations by a least-squares approach, Preprint. arXiv: 2011.08462, To appear in SICON.

[31]

P. Saramito, A damped Newton algorithm for computing viscoplastic fluid flows, J. Non-Newton. Fluid Mech., 238 (2016), 6-15.  doi: 10.1016/j.jnnfm.2016.05.007.

[32]

E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 109-129.  doi: 10.1016/s0294-1449(16)30221-9.

show all references

References:
[1]

M. BadraS. Ervedoza and S. Guerrero, Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 529-574.  doi: 10.1016/j.anihpc.2014.11.006.

[2]

V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim., 42 (2000), 73-89.  doi: 10.1007/s002450010004.

[3]

A. Bottois, J. Lemoine and A. Münch, Constructive exact control of semilinear multi-dimensional wave equations, Preprint. arXiv: 2101.06446.

[4]

F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, In CANUM 2012, 41e Congrès National d'Analyse Numérique, volume 41 of ESAIM Proc., 15–58. EDP Sci., Les Ulis, 2013. doi: 10.1051/proc/201341002.

[5]

F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1035-1078.  doi: 10.1016/j.anihpc.2013.07.011.

[6]

M. O. BristeauO. PironneauR. GlowinskiJ. Periaux and P. Perrier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. I. Least square formulations and conjugate gradient, Comput. Methods Appl. Mech. Engrg., 17 (1979), 619-657.  doi: 10.1016/0045-7825(79)90048-3.

[7]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors.

[8]

J.-M. Coron, Control and Nonlinearity, volume 136 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.

[9]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim., 43 (2004), 549-569.  doi: 10.1137/S036301290342471X.

[10]

P. Deuflhard, Newton Methods for Nonlinear Problems, volume 35 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2011. Affine invariance and adaptive algorithms, First softcover printing of the 2006 corrected printing. doi: 10.1007/978-3-642-23899-4.

[11]

A. DoubovaE. Fernández-CaraM. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.  doi: 10.1137/S0363012901386465.

[12]

T. DuyckaertsX. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.  doi: 10.1016/j.anihpc.2006.07.005.

[13]

S. Ervedoza, J. Lemoine and A. Münch, Exact controllability of semilinear heat equations through a constructive approach, Preprint, hal-03350534.

[14]

E. Fernández-Cara and A. Münch, Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods, Math. Control Relat. Fields, 2 (2012), 217-246.  doi: 10.3934/mcrf.2012.2.217.

[15]

E. Fernández-Cara and A. Münch, Strong convergent approximations of null controls for the 1D heat equation, SeMA J., 61 (2013), 49-78.  doi: 10.1007/s40324-013-0001-6.

[16]

E. Fernández-CaraA. Münch and D. A. Souza, On the numerical controllability of the two-dimensional heat, Stokes and Navier-Stokes equations, J. Sci. Comput., 70 (2017), 819-858.  doi: 10.1007/s10915-016-0266-x.

[17]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. 

[18]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.  doi: 10.1016/s0294-1449(00)00117-7.

[19]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, volume 34 of Lecture Notes Series, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[20]

R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems, volume 117 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2008. A numerical approach. doi: 10.1017/CBO9780511721595.

[21]

A. A. Lacey, Global blow-up of a nonlinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 161-167.  doi: 10.1017/S0308210500019120.

[22]

K. Le Balc'h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., 135 (2020), 103-139.  doi: 10.1016/j.matpur.2019.10.009.

[23]

J. Lemoine, I. Marín-Gayte and A. Münch, Approximation of null controls for semilinear heat equations using a least-squares approach, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 63, 28 pp. doi: 10.1051/cocv/2021062.

[24]

J. Lemoine and A. Münch, A fully space-time least-squares method for the unsteady Navier-Stokes system, J. Math. Fluid Mech., 23 (2021), Paper No. 102, 38 pp. doi: 10.1007/s00021-021-00627-6.

[25]

J. Lemoine and A. Münch, Resolution of the implicit Euler scheme for the Navier-Stokes equation through a least-squares method, Numer. Math., 147 (2021), 349-391.  doi: 10.1007/s00211-021-01171-1.

[26]

J. LemoineA. Münch and P. Pedregal, Analysis of continuous $H^{-1}$-least-squares approaches for the steady Navier-Stokes system, Appl. Math. Optim., 83 (2021), 461-488.  doi: 10.1007/s00245-019-09554-5.

[27]

A. Münch, A least-squares formulation for the approximation of controls for the Stokes system, Math. Control Signals Systems, 27 (2015), 49-75.  doi: 10.1007/s00498-014-0134-x.

[28]

A. Münch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European J. Appl. Math., 25 (2014), 277-306.  doi: 10.1017/S0956792514000023.

[29]

A. Münch and D. A. Souza, A mixed formulation for the direct approximation of $L^2$-weighted controls for the linear heat equation, Adv. Comput. Math., 42 (2016), 85-125.  doi: 10.1007/s10444-015-9412-5.

[30]

A. Münch and E. Trélat, Constructive exact control of semilinear 1d wave equations by a least-squares approach, Preprint. arXiv: 2011.08462, To appear in SICON.

[31]

P. Saramito, A damped Newton algorithm for computing viscoplastic fluid flows, J. Non-Newton. Fluid Mech., 238 (2016), 6-15.  doi: 10.1016/j.jnnfm.2016.05.007.

[32]

E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 109-129.  doi: 10.1016/s0294-1449(16)30221-9.

[1]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[2]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[3]

Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001

[4]

Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems and Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133

[5]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[6]

Piermarco Cannarsa, Alessandro Duca, Cristina Urbani. Exact controllability to eigensolutions of the bilinear heat equation on compact networks. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1377-1401. doi: 10.3934/dcdss.2022011

[7]

JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305

[8]

Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189

[9]

H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175

[10]

Hsueh-Chen Lee, Hyesuk Lee. An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29 (4) : 2755-2770. doi: 10.3934/era.2021012

[11]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[12]

Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087

[13]

Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068

[14]

Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041

[15]

Víctor Hernández-Santamaría, Luz de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations and Control Theory, 2018, 7 (2) : 247-273. doi: 10.3934/eect.2018012

[16]

Henri Berestycki, Juncheng Wei. On least energy solutions to a semilinear elliptic equation in a strip. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1083-1099. doi: 10.3934/dcds.2010.28.1083

[17]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[18]

José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control and Related Fields, 2020, 10 (2) : 275-304. doi: 10.3934/mcrf.2019039

[19]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[20]

Mo Chen, Lionel Rosier. Exact controllability of the linear Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3889-3916. doi: 10.3934/dcdsb.2020080

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (216)
  • HTML views (120)
  • Cited by (0)

Other articles
by authors

[Back to Top]