doi: 10.3934/mcrf.2022023
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Time-consistent lifetime portfolio selection under smooth ambiguity

1. 

China Institute for Actuarial Science, Central University of Finance and Economics, Beijing 100081, China

2. 

Department of Statistics and Actuarial Science, University of Waterloo, Canada

3. 

School of Statistics, Renmin University of China, Beijing 100874, China

*Corresponding author: Jingzhen Liu

Received  November 2021 Revised  April 2022 Early access May 2022

Fund Project: The corresponding author is supported by National Natural Science Foundation of China (11771466, 11901574)

This paper studies the optimal consumption, life insurance and investment problem for an income earner with uncertain lifetime under smooth ambiguity model. We assume that risky assets have unknown market prices that result in ambiguity. The individual forms his belief, that is, the distribution of market prices, according to available information. His ambiguity attitude, which is similar to the risk attitude described by utility function $ U $, is represented by an ambiguity preference function $ \phi $. Under the smooth ambiguity model, the problem becomes time-inconsistent. We derive the extended Hamilton-Jacobi-Bellman (HJB) equation for the equilibrium value function and equilibrium strategy. Then, we obtain the explicit solution for the equilibrium strategy when both $ U $ and $ \phi $ are power functions. We find that a more risk- or ambiguity-averse individual will consume less, buy more life insurance and invest less. Moreover, we find that the Tobin-Markowitz separation theorem is no longer applicable when ambiguity attitude is taken into consideration. The investment strategy will change with the characteristics of the decision maker, such as risk attitude, ambiguity attitude and age.

Citation: Luyang Yu, Liyuan Lin, Guohui Guan, Jingzhen Liu. Time-consistent lifetime portfolio selection under smooth ambiguity. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2022023
References:
[1]

T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch., 21 2017,331–360. doi: 10.1007/s00780-017-0327-5.

[2]

H. ChenM. SherrisT. Sun and W. G. Zhu, Living with ambiguity: Pricing mortality-linked securites with smooth ambiguity preferences, The Journal of Risk and Insurance, 80 (2013), 705-732. 

[3]

I. EkelandO. Mbodji and T. A. Pirvu, Time-consistent portfolio management, SIAM Journal of Financial Math., 3 (2012), 1-32.  doi: 10.1137/100810034.

[4]

D. Ellsberg, Risk, ambiguity, and the savage axioms, Quart. J. Econom., 75 (1961), 643-669.  doi: 10.2307/1884324.

[5]

W. Fei, Optimal consumption and portfolio choice with ambiguity and anticipation, Inform. Sci., 177 (2007), 5178-5190.  doi: 10.1016/j.ins.2006.07.028.

[6]

W. Fei, Optimal portfolio choice based on alpha-MEU under ambiguity, Stochastic Model, 25 (2009), 455-482.  doi: 10.1080/15326340903088826.

[7]

P. Ghirardato, F. Maccheroni and M. Marinacci, Ambiguity from the Differential Viewpoint, Discussion Paper, ICER, 2002.

[8]

I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Econom., 18 (1989), 141-153.  doi: 10.1016/0304-4068(89)90018-9.

[9]

G. GuanZ. Liang and J. Feng, Time-consistent proportional and investment strategies under ambiguity environment, Insurance Math. Econom., 83 (2018), 122-183.  doi: 10.1016/j.insmatheco.2018.09.007.

[10] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400829385.
[11]

D. HuS. Chen and H. Wang, Robust reinsurance contracts with uncertainty about jump risk, European J. Oper. Res., 266 (2018), 1175-1188.  doi: 10.1016/j.ejor.2017.10.061.

[12]

D. Hu and H. Wang, Reinsurance contract design when the insurer is ambiguity-averse, European J. Oper. Res., 86 (2019), 241-255.  doi: 10.1016/j.insmatheco.2019.03.007.

[13]

N. Jensen, Life insurance decisions under recursive utility, Scand. Actuar. J., (2019), 204–227. doi: 10.1080/03461238.2018.1541025.

[14]

N. Ju and J. Miao, Ambiguity, learning, and asset returns, Econometrica, 80 (2012), 559-591.  doi: 10.3982/ECTA7618.

[15]

P. KlibanoffM. Marinacci and S. Mukerji, A smooth model of decision making under ambiguity, Econometrica, 73 (2005), 1849-1892.  doi: 10.1111/j.1468-0262.2005.00640.x.

[16]

F. Knight, Risk, Uncertainty and Profit, Boston: Houghton Mifflin, 1921. doi: 10.1017/CBO9780511817410.005.

[17]

B. LiP. Luo and D. Xiong, Equilibrium strategies for alpha-maxmin expected utility maximization, SIAM J. Financial Math., 10 (2019), 394-429.  doi: 10.1137/18M1178542.

[18]

Z. X. Liang and X. Y. Zhao, Optimal investment, consumption and life insurance under stochastic framework, Scientia Sinica Mathematica, 46 (2016), 1863-1882. 

[19]

J. LiuL. LinK. F. C. Yiu and J. Wei, Non-exponential discounting portfolio management with habit formation, Math. Control Relat. Fields, 10 (2020), 761-783.  doi: 10.3934/mcrf.2020019.

[20]

P. J. Maenhout, Robust portfolio rules and asset pricing, The Peview of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.

[21]

R. Mehra and E. C. Prescott, The equity premium: A puzzle, Journal of Monetary Economics, 15 (1985), 145-161.  doi: 10.1016/0304-3932(85)90061-3.

[22]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.

[23]

S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of itô type, Stochastic Analysis and Applications, Abel Symp., Springer, Berlin, 2 (2007), 541-567.  doi: 10.1007/978-3-540-70847-6_25.

[24]

S. R. Pliska and J. Ye, Optimal life insurance purchase and consumption/investment under uncertain lifetime, Journal of Banking and Finance, (2007), 1307–1319.

[25]

S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 1975 (1975), 187-203.  doi: 10.1016/0304-405X(75)90004-5.

[26]

F. T. Seifried, Optimal investment for worst-case crash scenarios: A martingale approach, Math. Oper. Res., 35 (2010), 559-579.  doi: 10.1287/moor.1100.0459.

[27]

Y. Shen and J. Wei, Optimal investment-consumption-insurance with random parameters, Scand. Actuar. J., (2016), 37–62. doi: 10.1080/03461238.2014.900518.

[28]

M. Taboga, Portfolio selection with two-stage preferences, Financial Research Letters, 2 (2005), 152-164.  doi: 10.1016/j.frl.2005.06.003.

show all references

References:
[1]

T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch., 21 2017,331–360. doi: 10.1007/s00780-017-0327-5.

[2]

H. ChenM. SherrisT. Sun and W. G. Zhu, Living with ambiguity: Pricing mortality-linked securites with smooth ambiguity preferences, The Journal of Risk and Insurance, 80 (2013), 705-732. 

[3]

I. EkelandO. Mbodji and T. A. Pirvu, Time-consistent portfolio management, SIAM Journal of Financial Math., 3 (2012), 1-32.  doi: 10.1137/100810034.

[4]

D. Ellsberg, Risk, ambiguity, and the savage axioms, Quart. J. Econom., 75 (1961), 643-669.  doi: 10.2307/1884324.

[5]

W. Fei, Optimal consumption and portfolio choice with ambiguity and anticipation, Inform. Sci., 177 (2007), 5178-5190.  doi: 10.1016/j.ins.2006.07.028.

[6]

W. Fei, Optimal portfolio choice based on alpha-MEU under ambiguity, Stochastic Model, 25 (2009), 455-482.  doi: 10.1080/15326340903088826.

[7]

P. Ghirardato, F. Maccheroni and M. Marinacci, Ambiguity from the Differential Viewpoint, Discussion Paper, ICER, 2002.

[8]

I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Econom., 18 (1989), 141-153.  doi: 10.1016/0304-4068(89)90018-9.

[9]

G. GuanZ. Liang and J. Feng, Time-consistent proportional and investment strategies under ambiguity environment, Insurance Math. Econom., 83 (2018), 122-183.  doi: 10.1016/j.insmatheco.2018.09.007.

[10] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400829385.
[11]

D. HuS. Chen and H. Wang, Robust reinsurance contracts with uncertainty about jump risk, European J. Oper. Res., 266 (2018), 1175-1188.  doi: 10.1016/j.ejor.2017.10.061.

[12]

D. Hu and H. Wang, Reinsurance contract design when the insurer is ambiguity-averse, European J. Oper. Res., 86 (2019), 241-255.  doi: 10.1016/j.insmatheco.2019.03.007.

[13]

N. Jensen, Life insurance decisions under recursive utility, Scand. Actuar. J., (2019), 204–227. doi: 10.1080/03461238.2018.1541025.

[14]

N. Ju and J. Miao, Ambiguity, learning, and asset returns, Econometrica, 80 (2012), 559-591.  doi: 10.3982/ECTA7618.

[15]

P. KlibanoffM. Marinacci and S. Mukerji, A smooth model of decision making under ambiguity, Econometrica, 73 (2005), 1849-1892.  doi: 10.1111/j.1468-0262.2005.00640.x.

[16]

F. Knight, Risk, Uncertainty and Profit, Boston: Houghton Mifflin, 1921. doi: 10.1017/CBO9780511817410.005.

[17]

B. LiP. Luo and D. Xiong, Equilibrium strategies for alpha-maxmin expected utility maximization, SIAM J. Financial Math., 10 (2019), 394-429.  doi: 10.1137/18M1178542.

[18]

Z. X. Liang and X. Y. Zhao, Optimal investment, consumption and life insurance under stochastic framework, Scientia Sinica Mathematica, 46 (2016), 1863-1882. 

[19]

J. LiuL. LinK. F. C. Yiu and J. Wei, Non-exponential discounting portfolio management with habit formation, Math. Control Relat. Fields, 10 (2020), 761-783.  doi: 10.3934/mcrf.2020019.

[20]

P. J. Maenhout, Robust portfolio rules and asset pricing, The Peview of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.

[21]

R. Mehra and E. C. Prescott, The equity premium: A puzzle, Journal of Monetary Economics, 15 (1985), 145-161.  doi: 10.1016/0304-3932(85)90061-3.

[22]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.

[23]

S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of itô type, Stochastic Analysis and Applications, Abel Symp., Springer, Berlin, 2 (2007), 541-567.  doi: 10.1007/978-3-540-70847-6_25.

[24]

S. R. Pliska and J. Ye, Optimal life insurance purchase and consumption/investment under uncertain lifetime, Journal of Banking and Finance, (2007), 1307–1319.

[25]

S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 1975 (1975), 187-203.  doi: 10.1016/0304-405X(75)90004-5.

[26]

F. T. Seifried, Optimal investment for worst-case crash scenarios: A martingale approach, Math. Oper. Res., 35 (2010), 559-579.  doi: 10.1287/moor.1100.0459.

[27]

Y. Shen and J. Wei, Optimal investment-consumption-insurance with random parameters, Scand. Actuar. J., (2016), 37–62. doi: 10.1080/03461238.2014.900518.

[28]

M. Taboga, Portfolio selection with two-stage preferences, Financial Research Letters, 2 (2005), 152-164.  doi: 10.1016/j.frl.2005.06.003.

Figure 1.  Effect of $ \alpha $ on consumption
Figure 2.  Effect of $ \alpha $ on premium
Figure 3.  Effect of $ \alpha $ on investment
Figure 4.  Effect of $ \alpha $ on investment share
Figure 5.  Effect of $ \gamma $ on consumption
Figure 6.  Effect of $ \gamma $ on premium
Figure 7.  Effect of $ \gamma $ on investment
Figure 8.  Effect of $ \gamma $ on investment share
Figure 9.  Effects of $ \sigma $ and $ \gamma $ on risk investment
Figure 10.  Effects of $ \sigma $ and $ \alpha $ on risk investment
Figure 11.  Effects of $ \mu $ and $ \gamma $ on risk investment
Figure 12.  Effects of $ \mu $ and $ \alpha $ on risk investment
Table 1.  Values of the parameters
Text interpretation Symbol Value
risk-free interest rate $ r $ 0.03
discount rate $ \beta $ 0.04
mortality hazard function $ \mu(t) $ $ \frac{e^{\frac{t-86.3}{9.5}}}{9.5} $
premium rate $ \eta(t) $ $ 1.1\mu(t) $
income $ i(t) $ $ 50000e^{0.04t} $
retirement time $ T $ 40
volatility of risky assets $ \sigma_1 $, $ \sigma_2 $ 2.5%
distribution of $ \lambda_1 $ $ N(u_1, \Sigma_1) $ $ N(0.1, 0.3) $
distribution of $ \lambda_2 $ $ N(u_2, \Sigma_2) $ $ N(0.1, 0.5) $
initial wealth $ X(0) $ 20000
risk aversion $ \gamma $ 2
ambiguity aversion $ \alpha $ 2
Text interpretation Symbol Value
risk-free interest rate $ r $ 0.03
discount rate $ \beta $ 0.04
mortality hazard function $ \mu(t) $ $ \frac{e^{\frac{t-86.3}{9.5}}}{9.5} $
premium rate $ \eta(t) $ $ 1.1\mu(t) $
income $ i(t) $ $ 50000e^{0.04t} $
retirement time $ T $ 40
volatility of risky assets $ \sigma_1 $, $ \sigma_2 $ 2.5%
distribution of $ \lambda_1 $ $ N(u_1, \Sigma_1) $ $ N(0.1, 0.3) $
distribution of $ \lambda_2 $ $ N(u_2, \Sigma_2) $ $ N(0.1, 0.5) $
initial wealth $ X(0) $ 20000
risk aversion $ \gamma $ 2
ambiguity aversion $ \alpha $ 2
[1]

Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039

[2]

Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 341-366. doi: 10.3934/jimo.2020156

[3]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1185-1222. doi: 10.3934/jimo.2021015

[4]

Ailing Shi, Xingyi Li, Zhongfei Li. Optimal portfolio selection with life insurance under subjective survival belief and habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022051

[5]

Lihua Bian, Zhongfei Li, Haixiang Yao. Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1383-1410. doi: 10.3934/jimo.2020026

[6]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control and Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[7]

Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2369-2399. doi: 10.3934/jimo.2021072

[8]

Xiaoyu Xing, Caixia Geng. Optimal investment-reinsurance strategy in the correlated insurance and financial markets. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021120

[9]

Jingzhen Liu, Shiqi Yan, Shan Jiang, Jiaqin Wei. Optimal investment, consumption and life insurance strategies under stochastic differential utility with habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022040

[10]

Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control and Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187

[11]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3065-3081. doi: 10.3934/jimo.2019094

[12]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[13]

Ludovic Tangpi. Efficient hedging under ambiguity in continuous time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 6-. doi: 10.1186/s41546-020-00048-9

[14]

Alexander Melnikov, Hongxi Wan. CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 343-368. doi: 10.3934/puqr.2021017

[15]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control and Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[16]

Yu Yuan, Hui Mi. Robust optimal asset-liability management with penalization on ambiguity. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021121

[17]

Zheng Dou, Shaoyong Lai. Optimal contracts and asset prices in a continuous-time delegated portfolio management problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022083

[18]

Ka Wo Lau, Yue Kuen Kwok. Optimal execution strategy of liquidation. Journal of Industrial and Management Optimization, 2006, 2 (2) : 135-144. doi: 10.3934/jimo.2006.2.135

[19]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[20]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (123)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]