[1]
|
T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch., 21 2017,331–360.
doi: 10.1007/s00780-017-0327-5.
|
[2]
|
H. Chen, M. Sherris, T. Sun and W. G. Zhu, Living with ambiguity: Pricing mortality-linked securites with smooth ambiguity preferences, The Journal of Risk and Insurance, 80 (2013), 705-732.
|
[3]
|
I. Ekeland, O. Mbodji and T. A. Pirvu, Time-consistent portfolio management, SIAM Journal of Financial Math., 3 (2012), 1-32.
doi: 10.1137/100810034.
|
[4]
|
D. Ellsberg, Risk, ambiguity, and the savage axioms, Quart. J. Econom., 75 (1961), 643-669.
doi: 10.2307/1884324.
|
[5]
|
W. Fei, Optimal consumption and portfolio choice with ambiguity and anticipation, Inform. Sci., 177 (2007), 5178-5190.
doi: 10.1016/j.ins.2006.07.028.
|
[6]
|
W. Fei, Optimal portfolio choice based on alpha-MEU under ambiguity, Stochastic Model, 25 (2009), 455-482.
doi: 10.1080/15326340903088826.
|
[7]
|
P. Ghirardato, F. Maccheroni and M. Marinacci, Ambiguity from the Differential Viewpoint, Discussion Paper, ICER, 2002.
|
[8]
|
I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Econom., 18 (1989), 141-153.
doi: 10.1016/0304-4068(89)90018-9.
|
[9]
|
G. Guan, Z. Liang and J. Feng, Time-consistent proportional and investment strategies under ambiguity environment, Insurance Math. Econom., 83 (2018), 122-183.
doi: 10.1016/j.insmatheco.2018.09.007.
|
[10]
|
L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.
doi: 10.1515/9781400829385.
|
[11]
|
D. Hu, S. Chen and H. Wang, Robust reinsurance contracts with uncertainty about jump risk, European J. Oper. Res., 266 (2018), 1175-1188.
doi: 10.1016/j.ejor.2017.10.061.
|
[12]
|
D. Hu and H. Wang, Reinsurance contract design when the insurer is ambiguity-averse, European J. Oper. Res., 86 (2019), 241-255.
doi: 10.1016/j.insmatheco.2019.03.007.
|
[13]
|
N. Jensen, Life insurance decisions under recursive utility, Scand. Actuar. J., (2019), 204–227.
doi: 10.1080/03461238.2018.1541025.
|
[14]
|
N. Ju and J. Miao, Ambiguity, learning, and asset returns, Econometrica, 80 (2012), 559-591.
doi: 10.3982/ECTA7618.
|
[15]
|
P. Klibanoff, M. Marinacci and S. Mukerji, A smooth model of decision making under ambiguity, Econometrica, 73 (2005), 1849-1892.
doi: 10.1111/j.1468-0262.2005.00640.x.
|
[16]
|
F. Knight, Risk, Uncertainty and Profit, Boston: Houghton Mifflin, 1921.
doi: 10.1017/CBO9780511817410.005.
|
[17]
|
B. Li, P. Luo and D. Xiong, Equilibrium strategies for alpha-maxmin expected utility maximization, SIAM J. Financial Math., 10 (2019), 394-429.
doi: 10.1137/18M1178542.
|
[18]
|
Z. X. Liang and X. Y. Zhao, Optimal investment, consumption and life insurance under stochastic framework, Scientia Sinica Mathematica, 46 (2016), 1863-1882.
|
[19]
|
J. Liu, L. Lin, K. F. C. Yiu and J. Wei, Non-exponential discounting portfolio management with habit formation, Math. Control Relat. Fields, 10 (2020), 761-783.
doi: 10.3934/mcrf.2020019.
|
[20]
|
P. J. Maenhout, Robust portfolio rules and asset pricing, The Peview of Financial Studies, 17 (2004), 951-983.
doi: 10.1093/rfs/hhh003.
|
[21]
|
R. Mehra and E. C. Prescott, The equity premium: A puzzle, Journal of Monetary Economics, 15 (1985), 145-161.
doi: 10.1016/0304-3932(85)90061-3.
|
[22]
|
R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560.
|
[23]
|
S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of itô type, Stochastic Analysis and Applications, Abel Symp., Springer, Berlin, 2 (2007), 541-567.
doi: 10.1007/978-3-540-70847-6_25.
|
[24]
|
S. R. Pliska and J. Ye, Optimal life insurance purchase and consumption/investment under uncertain lifetime, Journal of Banking and Finance, (2007), 1307–1319.
|
[25]
|
S. F. Richard, Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of Financial Economics, 1975 (1975), 187-203.
doi: 10.1016/0304-405X(75)90004-5.
|
[26]
|
F. T. Seifried, Optimal investment for worst-case crash scenarios: A martingale approach, Math. Oper. Res., 35 (2010), 559-579.
doi: 10.1287/moor.1100.0459.
|
[27]
|
Y. Shen and J. Wei, Optimal investment-consumption-insurance with random parameters, Scand. Actuar. J., (2016), 37–62.
doi: 10.1080/03461238.2014.900518.
|
[28]
|
M. Taboga, Portfolio selection with two-stage preferences, Financial Research Letters, 2 (2005), 152-164.
doi: 10.1016/j.frl.2005.06.003.
|