The aim of this paper is to investigate an inverse problem of recovering a space-dependent source term governed by distributed order time-fractional diffusion equations in Hilbert scales. Such a problem is ill-posed and has important practical applications. For this problem, we propose a general regularization method based on the idea of the filter method. With a suitable source condition, we prove that the method is of optimal order under various choices of regularization parameter. One is based on the a priori regularization parameter choice rule and another one is the discrepancy principle. Finally, the capabilities of our method are illustrated by both the Tikhonov and the Landweber method.
Citation: |
[1] |
W. Bu, A. Xiao and W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72 (2017), 422-441.
doi: 10.1007/s10915-017-0360-8.![]() ![]() ![]() |
[2] |
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, Springer, 2016.
doi: 10.1007/978-3-319-28739-3.![]() ![]() ![]() |
[3] |
J. R. Cannon, Determination of an unknown heat source from overspecified boundary data, SIAM J. Numer. Anal., 5 (1968), 275-286.
doi: 10.1137/0705024.![]() ![]() ![]() |
[4] |
X. Cheng, L. Yuan and K. Liang, Inverse source problem for a distributed-order time fractional diffusion equation, J. Inverse Ill-Posed Probl., 28 (2020), 17-32.
doi: 10.1515/jiip-2019-0006.![]() ![]() ![]() |
[5] |
R. Courant and D. Hilbert, Methods of Mathematical Physics, Translated from the English by Ch'ien Min and Kuo Tun-jen Science Press, Peking 1965.
![]() ![]() |
[6] |
N. M. Dien, D. N. D. Hai, T. Q. Viet and D. D. Trong, On Tikhonov's method and optimal error bound for inverse source problem for a time-fractional diffusion equation, Comput. Math. Appl., 80 (2020), 61-81.
doi: 10.1016/j.camwa.2020.02.024.![]() ![]() ![]() |
[7] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, 1996.
![]() ![]() |
[8] |
N. J. Ford, M. L. Morgado and M. Rebelo, An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron. Trans. Numer. Anal., 44 (2015), 289-305.
![]() ![]() |
[9] |
D. N. D. Hai and D. D. Trong, Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales, Appl. Math. Lett., 107 (2020), 106448, 9 pp.
doi: 10.1016/j.aml.2020.106448.![]() ![]() ![]() |
[10] |
A. Hasanov and B. Pektaș, Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method, Comput. Math. Appl., 65 (2013), 42-57.
doi: 10.1016/j.camwa.2012.10.009.![]() ![]() ![]() |
[11] |
A. Hazanee, D. Lesnic, M. I. Ismailov and N. B. Kerimov, Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions, Appl. Math. Comput., 346 (2019), 800-815.
doi: 10.1016/j.amc.2018.10.059.![]() ![]() ![]() |
[12] |
V. Isakov, Inverse Source Problems, American Mathematical Society, Providence, RI, 1990.
doi: 10.1090/surv/034.![]() ![]() ![]() |
[13] |
Y. Kian, E. Soccorsi and M. Yamamoto, On time-fractional diffusion equations with space-dependent variable order, Ann. Henri Poincaré, 19 (2018), 3855-3881.
doi: 10.1007/s00023-018-0734-y.![]() ![]() ![]() |
[14] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
![]() ![]() |
[15] |
A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252-281.
doi: 10.1016/j.jmaa.2007.08.024.![]() ![]() ![]() |
[16] |
A. Kubica and K. Ryszewska, Decay of solutions to parabolic-type problem with distributed order Caputo derivative, J. Math. Anal. Appl., 465 (2018), 75-99.
doi: 10.1016/j.jmaa.2018.04.067.![]() ![]() ![]() |
[17] |
Z. Li, K. Fujishiro and G. Li, Uniqueness in the inversion of distributed orders in ultraslow diffusion equations, J. Comput. Appl. Math., 369 (2020), 112564, 13 pp.
doi: 10.1016/j.cam.2019.112564.![]() ![]() ![]() |
[18] |
Z. Li, Y. Kian and E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations, Asymptot. Anal., 115 (2019), 95-126.
doi: 10.3233/ASY-191532.![]() ![]() ![]() |
[19] |
Z. Li, Y. Luchko and M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal., 17 (2014), 1114-1136.
doi: 10.2478/s13540-014-0217-x.![]() ![]() ![]() |
[20] |
Z. Li, Y. Luchko and M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl., 73 (2017), 1041-1052.
doi: 10.1016/j.camwa.2016.06.030.![]() ![]() ![]() |
[21] |
Y. S. Li, L. L. Sun, Z. Q. Zhang and T. Wei, Identification of the time-dependent source term in a multi-term time-fractional diffusion equation, Numer. Algor., 82 (2019), 1279-1301.
doi: 10.1007/s11075-019-00654-5.![]() ![]() ![]() |
[22] |
J. J. Liu, C. L. Sun and M. Yamamoto, Recovering the weight function in distributed order fractional equation from interior measurement, Appl. Numer. Math., 168 (2021), 84-103.
doi: 10.1016/j.apnum.2021.05.026.![]() ![]() ![]() |
[23] |
S. Lu, S. V. Pereverzev, Y. Shao and U. Tautenhahn, On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, J. Integral Equations Appl., 22 (2010), 483-517.
![]() ![]() |
[24] |
Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., 12 (2009), 409-422.
![]() ![]() |
[25] |
Z. Ruan and Z. Wang, Identification of a time-dependent source term for a time fractional diffusion problem, Appl. Anal., 96 (2017), 1638-1655.
doi: 10.1080/00036811.2016.1232400.![]() ![]() ![]() |
[26] |
W. Rundell and Z. Zhang, Fractional diffusion: Recovering the distributed fractional derivative from overposed data, Inverse Probl., 33 (2017), 035008, 27 pp.
doi: 10.1088/1361-6420/aa573e.![]() ![]() ![]() |
[27] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
[28] |
C. Sun and J. Liu, An inverse source problem for distributed order time-fractional diffusion equation, Inverse Probl., 36 (2020), 055008.
doi: 10.1088/1361-6420/ab762c.![]() ![]() ![]() |
[29] |
S. Tatar and S. Ulusoy, An inverse source problem for a one-dimensional space-time fractional diffusion equation, Appl. Anal., 94 (2015), 2233-2244.
doi: 10.1080/00036811.2014.979808.![]() ![]() ![]() |
[30] |
U. Tautenhahn, Optimality for ill-posed problems under general source conditions, Num. Funct. Anal. Optim., 19 (1998), 377-398.
doi: 10.1080/01630569808816834.![]() ![]() ![]() |
[31] |
D. D. Trong, D. N. D. Hai and N. D. Minh, Optimal regularization for an unknown source of space-fractional diffusion equation, Appl. Math. Comput., 349 (2019), 184-206.
doi: 10.1016/j.amc.2018.12.030.![]() ![]() ![]() |
[32] |
H. T. Nguyen, D. L. Le and V. T. Nguyen, Regularized solution of an inverse source problem for a time fractional diffusion equation, Appl. Math. Model., 40 (2016), 8244-8264.
doi: 10.1016/j.apm.2016.04.009.![]() ![]() ![]() |
[33] |
J. G. Wang, Y. B. Zhou and T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Appl. Numer. Math., 68 (2013), 39-57.
doi: 10.1016/j.apnum.2013.01.001.![]() ![]() ![]() |
[34] |
H. Ye, F. Liu, V. Anh and I. Turner, Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains, IMA J. Appl. Math., 80 (2015), 825-838.
doi: 10.1093/imamat/hxu015.![]() ![]() ![]() |
[35] |
Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl., 27 (2011), 035010, 12 pp.
doi: 10.1088/0266-5611/27/3/035010.![]() ![]() ![]() |