[1]
|
M. Asch and G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation—a numerical study, ESAIM Control Optim. Calc. Var., 3 (1998), 163-212.
doi: 10.1051/cocv:1998106.
|
[2]
|
E. Bécache, P. Joly and C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem, SIAM J. Numer. Anal., 39 (2002), 2109-2132.
doi: 10.1137/S0036142999359189.
|
[3]
|
D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, volume 44 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-36519-5.
|
[4]
|
E. Burman, A. Feizmohammadi, A. Münch and L. Oksanen, Space time stabilized finite element methods for a unique continuation problem subject to the wave equation, ESAIM Math. Model. Numer. Anal., 55 (2021), S969-S991.
doi: 10.1051/m2an/2020062.
|
[5]
|
E. Burman, A. Feizmohammadi, A. Munch and L. Oksanen, Spacetime finite element methods for control problems subject to the wave equation, working paper or preprint, September 2021.
|
[6]
|
F. L. Cardoso-Ribeiro, D. Matignon and L. Lefèvre, A partitioned finite element method for power-preserving discretization of open systems of conservation laws, IMA J. Math. Control Inform., 38 (2021), 493-533.
doi: 10.1093/imamci/dnaa038.
|
[7]
|
N. Cîndea, E. Fernández-Cara and A. Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates, ESAIM Control Optim. Calc. Var., 19 (2013), 1076-1108.
doi: 10.1051/cocv/2013046.
|
[8]
|
N. Cîndea and A. Münch, A mixed formulation for the direct approximation of the control of minimal $L^2$-norm for linear type wave equations, Calcolo, 52 (2015), 245-288.
doi: 10.1007/s10092-014-0116-x.
|
[9]
|
R. Font and F. Periago, Numerical simulation of the boundary exact control for the system of linear elasticity, Appl. Math. Lett., 23 (2010), 1021-1026.
doi: 10.1016/j.aml.2010.04.030.
|
[10]
|
R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., 103 (1992), 189-221.
doi: 10.1016/0021-9991(92)90396-G.
|
[11]
|
R. Glowinski, W. Kinton and M. F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation, Internat. J. Numer. Methods Engrg., 27 (1989), 623-635.
doi: 10.1002/nme.1620270313.
|
[12]
|
R. Glowinski, C. H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.
|
[13]
|
F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013.
|
[14]
|
L. I. Ignat and E. Zuazua, Convergence of a two-grid algorithm for the control of the wave equation, J. Eur. Math. Soc. (JEMS), 11 (2009), 351-391.
doi: 10.4171/JEMS/153.
|
[15]
|
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1988. Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.
|
[16]
|
S. Montaner and A. Münch, Approximation of controls for linear wave equations: A first order mixed formulation, Math. Control Relat. Fields, 9 (2019), 729-758.
doi: 10.3934/mcrf.2019030.
|
[17]
|
A. Osses, A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control, SIAM J. Control Optim., 40 (2001), 777-800.
doi: 10.1137/S0363012998345615.
|
[18]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.
|
[19]
|
A. Rincon and I.-S. Liu, On numerical approximation of an optimal control problem in linear elasticity, Divulg. Mat., 11 (2003), 91-107.
|
[20]
|
A. Serhani, D. Matignon and G. Haine, Partitioned finite element method for port-Hamiltonian systems with boundary damping: anisotropic heterogeneous 2D wave equations, IFAC-PapersOnLine, 52 (2019), 96-101.
|
[21]
|
R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge University Press, Cambridge, second edition, 2005.
doi: 10.1017/CBO9780511755422.
|
[22]
|
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9.
|
[23]
|
E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Review, 47 (2005), 197-243.
doi: 10.1137/S0036144503432862.
|