In this paper, we study an optimal management problem for a general insurance company which holds shares of an insurance company and a reinsurance company. The general company aims to derive the equilibrium reinsurance-investment strategy under the mean-variance criterion. The claim process described by a generalized compound dynamic contagion process introduced by [
Citation: |
[1] |
Y. Aït-Sahalia and T. R. Hurd, Portfolio choice in markets with contagion, Journal of Financial Econometrics, 14 (2016), 1-28.
doi: 10.1093/jjfinec/nbv024.![]() ![]() |
[2] |
H. Albrecher and S. R. Asmussen, Ruin probabilities and aggregrate claims distributions for shot noise Cox processes, Scandinavian Actuarial Journal, 2006 (2006), 86-110.
doi: 10.1080/03461230600630395.![]() ![]() ![]() |
[3] |
P. Azcue and N. Muler, Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints, Insurance Math. Econom., 44 (2009), 26-34.
doi: 10.1016/j.insmatheco.2008.09.006.![]() ![]() ![]() |
[4] |
L. Bai and H. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Mathematical Methods of Operations Research, 68 (2008), 181-205.
doi: 10.1007/s00186-007-0195-4.![]() ![]() ![]() |
[5] |
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016.
doi: 10.1093/rfs/hhq028.![]() ![]() |
[6] |
J. Bi, Z. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance Math. Econom., 70 (2016), 245-258.
doi: 10.1016/j.insmatheco.2016.06.012.![]() ![]() ![]() |
[7] |
T. Bjork and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems, SSRN, (2010), 1694759, 55 pp.
doi: 10.2139/ssrn. 1694759.![]() ![]() |
[8] |
T. Björk and J. Grandell, Exponential inequalities for ruin probabilities in the Cox case, Scandinavian Actuarial Journal, 1988 (1988), 77-111.
doi: 10.1080/03461238.1988.10413839.![]() ![]() ![]() |
[9] |
K. Borch, Reciprocal reinsurance treaties, ASTIN Bulletin: The Journal of the IAA, 1 (1960), 170-191.
doi: 10.1017/S0515036100009557.![]() ![]() |
[10] |
K. Borch, The optimal reinsurance treaty, ASTIN Bulletin: The Journal of the IAA, 5 (1969), 293-297.
doi: 10.1017/S051503610000814X.![]() ![]() |
[11] |
J. Cai, Y. Fang, Z. Li and G. E. Willmot, Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability, Journal of Risk and Insurance, 80 (2013), 145-168.
doi: 10.1111/j.1539-6975.2012.01462.x.![]() ![]() |
[12] |
J. Cao, D. Landriault and B. Li, Optimal reinsurance-investment strategy for a dynamic contagion claim model, Insurance Math. Econom., 93 (2020), 206-215.
doi: 10.1016/j.insmatheco.2020.04.013.![]() ![]() ![]() |
[13] |
L. Chen and Y. Shen, On a new paradigm of optimal reinsurance: A stochastic Stackelberg differential game between an insurer and a reinsurer, ASTIN Bulletin: The Journal of the IAA, 48 (2018), 905-960.
doi: 10.1017/asb.2018.3.![]() ![]() ![]() |
[14] |
L. Chen and Y. Shen, Stochastic Stackelberg differential reinsurance games under time-inconsistent mean-variance framework, Nsurance Math. Econom., 88 (2019), 120-137.
doi: 10.1016/j.insmatheco.2019.06.006.![]() ![]() ![]() |
[15] |
Z. Chen and P. Yang, Robust optimal reinsurance-investment strategy with price jumps and correlated claims, Insurance Math. Econom., 92 (2020), 27-46.
doi: 10.1016/j.insmatheco.2020.03.001.![]() ![]() ![]() |
[16] |
D. R. Cox, Some statistical methods connected with series of events, J. Roy. Statist. Soc. Ser. B, 17 (1955), 129-157.
doi: 10.1111/j.2517-6161.1955.tb00188.x.![]() ![]() ![]() |
[17] |
A. Dassios and H. Zhao, Ruin by dynamic contagion claims, Insurance Math. Econom., 51 (2012), 93-106.
doi: 10.1016/j.insmatheco.2012.03.006.![]() ![]() ![]() |
[18] |
A. Dassios and H. Zhao, A generalized contagion process with an application to credit risk, Int. J. Theor. Appl. Finance, 20 (2017), 1750003, 33 pp.
doi: 10.1142/S0219024917500030.![]() ![]() ![]() |
[19] |
J. K. Hale and H. Koçak, Dynamics and Bifurcations, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4612-4426-4.![]() ![]() |
[20] |
X. Han, Z. Liang and V. R. Young, Optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle, Scandinavian Actuarial Journal, 2020 (2020), 879-903.
doi: 10.1080/03461238.2020.1788136.![]() ![]() ![]() |
[21] |
A. G. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58 (1971), 83-90.
doi: 10.1093/biomet/58.1.83.![]() ![]() ![]() |
[22] |
C. Hipp and M. Plum, Optimal investment for insurers, Insurance Math. Econom., 27 (2000), 215-228.
doi: 10.1016/S0167-6687(00)00049-4.![]() ![]() ![]() |
[23] |
Y. Huang, X. Yang and J. Zhou, Robust optimal investment and reinsurance problem for a general insurance company under Heston model, Mathematical Methods of Operations Research, 85 (2017), 305-326.
doi: 10.1007/s00186-017-0570-8.![]() ![]() ![]() |
[24] |
D. Landriault, B. Li, D. Li and V. R. Young, Equilibrium strategies for the mean-variance investment problem over a random horizon, SIAM Journal on Financial Mathematics, 9 (2018), 1046-1073.
doi: 10.1137/17M1153479.![]() ![]() ![]() |
[25] |
D. Li, D. Li and V. R. Young, Optimality of excess-loss reinsurance under a mean-variance criterion, Insurance Math. Econom., 75 (2017), 82-89.
doi: 10.1016/j.insmatheco.2017.05.001.![]() ![]() ![]() |
[26] |
D. Li, X. Rong and H. Zhao, Time-consistent reinsurance–investment strategy for an insurer and a reinsurer with mean–variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142-162.
doi: 10.1016/j.cam.2015.01.038.![]() ![]() ![]() |
[27] |
D. Li, X. Rong and H. Zhao, The optimal investment problem for an insurer and a reinsurer under the constant elasticity of variance model, IMA Journal of Management Mathematics, 27 (2016), 255-280.
doi: 10.1093/imaman/dpu021.![]() ![]() ![]() |
[28] |
X. Liang, Z. Liang and V. R. Young, Optimal reinsurance under the mean-variance premium principle to minimize the probability of ruin, Insurance Math. Econom., 92 (2020), 128-146.
doi: 10.1016/j.insmatheco.2020.03.008.![]() ![]() ![]() |
[29] |
Z. Liang and E. Bayraktar, Optimal reinsurance and investment with unobservable claim size and intensity, Insurance Math. Econom., 55 (2014), 156-166.
doi: 10.1016/j.insmatheco.2014.01.011.![]() ![]() ![]() |
[30] |
Z. Liang, J. Bi, K. C. Yuen and C. Zhang, Optimal mean–variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Mathematical Methods of Operations Research, 84 (2016), 155-181.
doi: 10.1007/s00186-016-0538-0.![]() ![]() ![]() |
[31] |
Z. Liang, K. C. Yuen and J. Guo, Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process, Insurance Math. Econom., 49 (2011), 207-215.
doi: 10.1016/j.insmatheco.2011.04.005.![]() ![]() ![]() |
[32] |
S. D. Promislow and V. R. Young, U, Minimizing the probability of ruin when claims follow Brownian motion with drift, N. Am. Actuar. J., 9 (2005), 109-128.
doi: 10.1080/10920277.2005.10596214.![]() ![]() ![]() |
[33] |
H. Schmidli, Lundberg inequalities for a Cox model with a piecewise constant intensity, J. Appl. Probab., 33 (1996), 196–210. C
doi: 10.2307/3215277.![]() ![]() ![]() |
[34] |
G. Stabile and G. L. Torrisi, Risk processes with non-stationary Hawkes claims arrivals, Methodol. Comput. Appl. Probab., 12 (2010), 415-429.
doi: 10.1007/s11009-008-9110-6.![]() ![]() ![]() |
[35] |
R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, 23 (1955), 165-180.
doi: 10.1007/978-1-349-15492-0_10.![]() ![]() |
[36] |
Z. Sun, X. Zhang and K. C. Yuen, Mean-variance asset-liability management with affine diffusion factor process and a reinsurance option, Scandinavian Actuarial Journal, 2020 (2020), 218-244.
doi: 10.1080/03461238.2019.1658619.![]() ![]() ![]() |
[37] |
W. J. Terrell, Stability and Stabilization: An Introduction, Princeton University Press, 2009.
doi: 10.1515/9781400833351.![]() ![]() ![]() |
[38] |
Y. Zeng and Z. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insurance Math. Econom., 49 (2011), 145-154.
doi: 10.1016/j.insmatheco.2011.01.001.![]() ![]() ![]() |
[39] |
X. Zhang, H. Meng, J. Xiong and Y. Shen, Robust optimal investment and reinsurance of an insurer under jump-diffusion models, Mathematical Control and Related Fields, 9 (2019), 59-76.
doi: 10.3934/mcrf.2019003.![]() ![]() ![]() |
[40] |
X. Zhang, H. Meng and Y. Zeng, Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling, Insurance Math. Econom., 67 (2016), 125–132.
doi: 10.1016/j. insmatheco. 2016.01.001.![]() ![]() ![]() |
[41] |
J. Zhou, X. Yang and Y. Huang, Robust optimal investment and proportional reinsurance toward joint interests of the insurer and the reinsurer, Comm. Statist. Theory Methods, 46 (2017), 10733-10757.
doi: 10.1080/03610926.2016.1242734.![]() ![]() ![]() |
The equilibrium reinsurance-investment strategies and value function
Impact of parameters