\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations

This work was partially supported by the National Natural Science Foundation of China under grant 12071067, National Key R & D Program of China under grant 2020YFA0714102, and NSF grant DMS–1812921

Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with a linear quadratic optimal control for a class of singular Volterra integral equations. Our framework covers the problems for fractional differential equations. Under some necessary convexity conditions, an optimal control exists, and can be characterized via Fréchet derivative of the quadratic functional in a Hilbert space or via maximum principle type necessary conditions. However, these (equivalent) characterizations are not causal, meaning that the current value of the optimal control depends on the future values of the optimal state. Practically, this is not feasible. We obtain a causal state feedback representation of the optimal control via a Fredholm integral equation. Finally, a concrete form of our results for fractional differential equations is presented.

    Mathematics Subject Classification: Primary: 45D05, 45F15, 49N10, 49N35, 93B52.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323-337.  doi: 10.1007/s11071-004-3764-6.
    [2] O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems, J. Vib. Control, 14 (2008), 1291-1299.  doi: 10.1177/1077546307087451.
    [3] O. P. AgrawalO. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables, J. Vib. Control, 16 (2010), 1967-1976.  doi: 10.1177/1077546309353361.
    [4] T. S. Angell, On the optimal control of systems governed by nonlinear integral equations, J. Optim. Theory Appl., 19 (1967), 29-45.  doi: 10.1007/BF00934050.
    [5] A. A. M. ArafaS. Z. Rida and M. Khalil, Solutions of fractional order model of childhook diseases with constant vaccination strategy, Math. Sci. Lett., 1 (2012), 17-23. 
    [6] S. A. Belbas, A new method for optimal control of Volterra integral equations, Appl. Math. Comput., 189 (2007), 1902-1915.  doi: 10.1016/j.amc.2006.12.077.
    [7] S. A. Belbas, A reduction method for optimal control of Volterra integral equations, Appl. Math. Comput., 197 (2008), 880-890.  doi: 10.1016/j.amc.2007.08.093.
    [8] D. A. Benson, The Fractional Advection-Dispersion Equation: Development and Application, Ph.D thesis, University of Nevada at Reno, Reno, NV, 1998.
    [9] V. I. Bogachev, Measure Theory. I, Springer, New York, 2007. doi: 10.1007/978-3-540-34514-5.
    [10] J. F. BonnansC. de la Vega and X. Dupuis, First- and second-order optimality conditions for optimal control problems of state constrained integral equations, J. Optim. Theory Appl., 159 (2013), 1-40.  doi: 10.1007/s10957-013-0299-3.
    [11] L. Bourdin, A class of fractional optimal control problems and fractional pontryagin's systems. Existence of a fractional noether's theorem, preprint, 2012, arXiv: 1203.1422v1.
    [12] C. Burnap and M. A. Kazemi, Optimal control of a system governed by nonlinear Volterra integral equations with delay, IMA J. Math. Control Inform., 16 (1999), 73-89.  doi: 10.1093/imamci/16.1.73.
    [13] M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent-II, Geophys. J. Roy. Astron. Soc., 13 (1967), 529-539. 
    [14] M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91 (1971), 134-147. 
    [15] D. A. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 54 (1987), 43-61.  doi: 10.1007/BF00940404.
    [16] J. T. Chern, Finite Element Modeling of Viscoelastic Materials on the Theory of Fractional Calculus, Ph.D thesis, Pennsylvania State University, State College, PA, 1993.
    [17] S. Das and P. K. Gupta, A mathematical model on fractional Lotka-Volterra equations, J. Theoret Biol., 277 (2011), 1-6.  doi: 10.1016/j.jtbi.2011.01.034.
    [18] C. de la Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 130 (2006), 79-93.  doi: 10.1007/s10957-006-9087-7.
    [19] E. DemirciA. Unal and N. Özalp, A fractional order SEIR model with density dependent death rate, Hacet. J. Math. Stat., 40 (2011), 287-295. 
    [20] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn., 71 (2013), 613-619.  doi: 10.1007/s11071-012-0475-2.
    [21] K. Diethelm and A. D. Freed, On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity, Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties, Springer, Heidelberg, (1999), 217-224.
    [22] G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dyn., 53 (2008), 215-222.  doi: 10.1007/s11071-007-9309-z.
    [23] M. I. Gomoyunov, Dynamic programming principle and Hamiton-Jacobi-Bellman equations for frcational-order systems, SIAM J. Control Optim., 58 (2020), 3185-3211.  doi: 10.1137/19M1279368.
    [24] M. M. HasanX. W. Tangpong and O. P. Agrawal, Fractional optimal control of distributed systems in spherical and cylindrical coordinates, J. Vib. Control, 18 (2011), 1506-1525.  doi: 10.1177/1077546311408471.
    [25] R. E. Kalman, Controibutions to the theory of optimal control, Bol. Soc. Mat. Mexicanna, 5 (1960), 102-119. 
    [26] M. I. Kamien and E. Muller, Optimal control with integral state equations, Rev. Econ. Stud., 43 (1976), 469-473. 
    [27] R. Kamocki, On the existence of optimal solutions to fractional optimal control problems, Appl. Math. Comput., 235 (2014), 94-104.  doi: 10.1016/j.amc.2014.02.086.
    [28] R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.
    [29] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Eqautions, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
    [30] A. Koenig, Lack of null-controllability for the fractional heat equation and related equations, SIAM J. Control Optim., 58 (2020), 3130-3160.  doi: 10.1137/19M1256610.
    [31] P. Lin and J. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle, SIAM J. Control Optim., 58 (2020), 136-164.  doi: 10.1137/19M124602X.
    [32] N. G. Medhin, Optimal process governed by integral equations, J. Math. Anal. Appl., 120 (1986), 1-12.  doi: 10.1016/0022-247X(86)90199-X.
    [33] R. MetzlerW. SchickH. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180-7186. 
    [34] L. Mou and J. Yong, Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method, J. Ind. Manag. Optim., 2 (2006), 95-117.  doi: 10.3934/jimo.2006.2.95.
    [35] E. OkyereF. T. OduroS. K. AmponsahI. K. Dontwi and N. K. Frempong, Fractional order SIR model with constant population, British J. Math. Comput. Sci., 14 (2016), 1-12. 
    [36] K. B. Oldham and  J. SpanierThe Fractional Calculus, Mathematics in Science and Engineering, Vol. 111. Academic Press, New York-London, 1974. 
    [37] L. Pandolfi, The quadratic regulator problem and the Riccati equation for a process governed by a linear Volterra integrodifferential equations, IEEE Trans. Automat. Control, 63 (2018), 1517-1522.  doi: 10.1109/TAC.2017.2753462.
    [38] A. J. Pritchard and Y. You, Causal feedback optimal control for Volterra integral equations, SIAM J. Control Optim., 34 (1996), 1874-1890.  doi: 10.1137/S0363012994275944.
    [39] E. Scalas, R. Gorenflo and F. Mainardi, Uncoupled continuous-time random walks: Analytic solution and limiting behaviour of the master equation, Phys. Rev. E, 69 (2004), 011107, 8 pp. doi: 10.1103/PhysRevE.69.011107.
    [40] M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline Series, McGraw-Hill, New York, 1969.
    [41] J. Sun and J. Yong, Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems, SpringerBriefs in Mathematics, Springer, Cham, 2020. doi: 10.1007/978-3-030-48306-7.
    [42] J. Sun and J. Yong, Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions, SpringerBriefs in Mathematics, Springer, Cham, 2019. doi: 10.1007/978-3-030-20922-3.
    [43] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298. 
    [44] V. R. Vinokurov, Optimal control of processes describted by integra equations, parts I, II, and III, SIAM J. Control, 8 (1970), 572. 
  • 加载中
SHARE

Article Metrics

HTML views(131) PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return