\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

The application of a universal separating vector lemma to optimal sampled-data control problems with nonsmooth Mayer cost function

  • *Corresponding author: Samir Adly

    *Corresponding author: Samir Adly 
Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • In this paper we provide a Pontryagin maximum principle for optimal sampled-data control problems with nonsmooth Mayer cost function. Our investigation leads us to consider, in a first place, a general issue on convex sets separation. Precisely, thanks to the classical Fan's minimax theorem, we establish the existence of a universal separating vector which belongs to the convex envelope of a given set of separating vectors of the singletons of a given compact convex set. This so-called universal separating vector lemma is used, together with packages of convex control perturbations, to derive a Pontryagin maximum principle for optimal sampled-data control problems with nonsmooth Mayer cost function. As an illustrative application of our main result we solve a simple example by implementing an indirect numerical method.

    Mathematics Subject Classification: Primary: 34H05, 49K15, 93C57.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A nonempty convex set not containing the origin $ 0_{{\mathbb{R}}^2} $ with no separating vector

    Figure 2.  Here $ v_1 $ and $ v_2 $ are respectively separating vectors of the nonempty closed convex sets $ C_1 $ and $ C_2 $ not containing the origin $ 0_{{\mathbb{R}}^2} $. Does there exist a separating vector of the closed convex set $ C : = C_1 \cup C_2 $ which is a convex combination of $ v_1 $ and $ v_2 $?

    Figure 3.  Two-dimensional unbounded closed counterexample from Remark 2.5

    Figure 4.  The optimal trajectory $ x $ and optimal sampled-data control $ u $ for Problem (Ex)

  • [1] J. E. Ackermann, Sampled-Data Control Systems: Analysis and Synthesis, Robust System Design, Springer-Verlag, 1985.
    [2] A. A. Agrachev and Y. L. Sachkov., Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.
    [3] K. J. Aström, On the Choice of Sampling Rates in Optimal Linear Systems, IBM Research: Engineering Studies, 1963.
    [4] K. J. Aström and B. Wittenmark, Computer-Controlled Systems, Prentice Hall, 1997.
    [5] M. Bergounioux and L. Bourdin, Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 35, 38 pp. doi: 10.1051/cocv/2019021.
    [6] M. Bergounioux and H. Zidani, Pontryagin maximum principle for optimal control of variational inequalities, SIAM J. Control Optim., 37 (1999), 1273-1290.  doi: 10.1137/S0363012997328087.
    [7] M. BohnerK. KenzhebaevO. Lavrova and O. Stanzhytskyi, Pontryagin's maximum principle for dynamic systems on time scales, J. Difference Equ. Appl., 23 (2017), 1161-1189.  doi: 10.1080/10236198.2017.1284829.
    [8] L. Bourdin, Note on Pontryagin Maximum Principle with Running State Constraints and Smooth Dynamics - Proof Based on the Ekeland Variational Principle, Research Notes - Available on HAL, 2016.
    [9] L. BourdinO. Stanzhytskyi and E. Trélat, Addendum to Pontryagin's maximum principle for dynamic systems on time scales, J. Difference Equ. Appl., 23 (2017), 1760-1763.  doi: 10.1080/10236198.2017.1363194.
    [10] L. Bourdin and E. Trélat, Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales, SIAM J. Control Optim., 51 (2013), 3781-3813.  doi: 10.1137/130912219.
    [11] L. Bourdin and E. Trélat, Pontryagin Maximum Principle for Optimal Sampled-Data Control Problems, Proceedings of the IFAC workshop CAO, 2015.
    [12] L. Bourdin and E. Trélat, Optimal sampled-data control, and generalizations on time scales, Math. Control Relat. Fields, 6 (2016), 53-94.  doi: 10.3934/mcrf.2016.6.53.
    [13] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series on Applied Mathematics, 2. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.
    [14] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
    [15] E. Casas, Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations, SIAM J. Control Optim., 35 (1997), 1297-1327.  doi: 10.1137/S0363012995283637.
    [16] L. Cesari, Optimization-Theory and Applications, Problems with Ordinary Differential Equations, Applications of Mathematics (New York), 17. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4613-8165-5.
    [17] F. Clarke, Necessary conditions in optimal control and in the calculus of variations, Differential Equations, Chaos and Variational Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 75 (2008), 143-156.  doi: 10.1007/978-3-7643-8482-1_11.
    [18] F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264. Springer, London, 2013. doi: 10.1007/978-1-4471-4820-3.
    [19] F. H. Clarke, Optimization and Nonsmooth Analysis, Second edition, Classics in Applied Mathematics, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. doi: 10.1137/1.9781611971309.
    [20] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998.
    [21] A. V. Dmitruk and A. M. Kaganovich, Maximum principle for optimal control problems with intermediate constraints, Comput. Math. Model., 22 (2011), 180-215.  doi: 10.1007/s10598-011-9096-8.
    [22] A. V. Dmitruk and N. P. Osmolovskiĭ, On the proof of the Pontryagin maximum principle by means of needle variations, Fundam. Prikl. Mat., 19 (2014), 49-73.  doi: 10.1007/s10958-016-3044-2.
    [23] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.
    [24] M. Elad, Sparse and Redundant Representations, From Theory to Applications in Signal and Image Processing, Springer, New York, 2010. doi: 10.1007/978-1-4419-7011-4.
    [25] M. S. Fadali and A. Visioli, Digital Control Engineering: Analysis and Design, Elsevier, 2013.
    [26] K. Fan, Minimax theorems, Proc. Natl. Acad. Sci. USA, 39 (1953), 42-47.  doi: 10.1073/pnas.39.1.42.
    [27] H. O. Fattorini, Optimal control problems for distributed parameter systems in Banach spaces, Appl. Math. Optim., 28 (1993), 225-257.  doi: 10.1007/BF01200380.
    [28] H. O. Fattorini, Infinite-Dimensional Optimization and Control Theory, Encyclopedia of Mathematics and its Applications, 62. Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511574795.
    [29] H. Frankowska, The first order necessary conditions for nonsmooth variational and control problems, SIAM J. Control Optim., 22 (1984), 1-12.  doi: 10.1137/0322001.
    [30] H. Frankowska, The maximum principle for an optimal solution to a differential inclusion with end points constraints, SIAM J. Control Optim., 25 (1987), 145-157.  doi: 10.1137/0325010.
    [31] L. Grüne and J. Pannek, Nonlinear Model Predictive Control, Second edition, Communications and Control Engineering Series, Springer, Cham, 2017. doi: 10.1007/978-3-319-46024-6.
    [32] T. Haberkorn and E. Trélat, Convergence results for smooth regularizations of hybrid nonlinear optimal control problems, SIAM J. Control Optim., 49 (2011), 1498-1522.  doi: 10.1137/100809209.
    [33] M. R. Hestenes, Calculus of Variations and Optimal Control Theory, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.
    [34] A. Korytowski, A simple proof of the maximum principle with endpoint constraints, Control Cybernet., 43 (2014), 5-13. 
    [35] I. D. Landau and G. Zito, Digital Control Systems: Design, Identification and Implementation, Springer, 2006.
    [36] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, second edition, 1986.
    [37] X. Li and Y. Yao, Maximum principle of distributed parameter systems with time lags, Distributed Parameter Systems, Lect. Notes Control Inf. Sci., Springer, Berlin, 75 (1985), 410-427.  doi: 10.1007/BFb0005665.
    [38] X. Li and J. Yong, Necessary conditions for optimal control of distributed parameter systems, SIAM J. Control Optim., 29 (1991), 895-908.  doi: 10.1137/0329049.
    [39] X. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-4260-4.
    [40] D. LiberzonCalculus of Variations and Optimal Control Theory. A Concise Introduction, Princeton University Press, Princeton, NJ, 2012. 
    [41] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. II. Applications, Grundlehren der mathematischen Wissenschaften, 331. Springer-Verlag, Berlin, 2006.
    [42] B. S. Mordukhovich, Variational analysis in nonsmooth optimization and discrete optimal control, Math. Oper. Res., 32 (2007), 840-856.  doi: 10.1287/moor.1070.0274.
    [43] B. S. Mordukhovich and I. Shvartsman, Discrete maximum principle for nonsmooth optimal control problems with delays, Kibernet. Sistem. Anal., 38 (2002), 123-133.  doi: 10.1023/A:1016399530185.
    [44] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.
    [45] E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Second edition, Texts in Applied Mathematics, 6. Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.
    [46] E. Trélat, Contrôle Optimal: Théorie & Applications, Vuibert Paris, 2005.
    [47] R. Vinter, Optimal Control, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010. doi: 10.1007/978-0-8176-8086-2.
    [48] H. Yu, Pontryagin's principle of mixed control-state constrained optimal control governed by fluid dynamic systems, Numer. Funct. Anal. Optim., 34 (2013), 451-484.  doi: 10.1080/01630563.2012.760592.
    [49] E. Zermelo, Über das navigationsproblem bei ruhender oder veränderlicher windverteilung, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 11 (1931), 114-124.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(108) PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return