
-
Previous Article
Eliminating other-race effect for multi-ethnic facial expression recognition
- MFC Home
- This Issue
-
Next Article
Comparisons of different methods for balanced data classification under the discrete non-local total variational framework
SEMANTIC-RTAB-MAP (SRM): A semantic SLAM system with CNNs on depth images
1. | Beihang University, Beijing, China |
2. | Shenzhen Academy of Aerospace Technology, Shenzhen, China |
SLAM (simultaneous localization and mapping) system can be implemented based on monocular, RGB-D and stereo cameras. RTAB-MAP is a SLAM system, which can build dense 3D map. In this paper, we present a novel method named SEMANTIC-RTAB-MAP (SRM) to implement a semantic SLAM system based on RTAB-MAP and deep learning. We use YOLOv2 network to detect target objects in 2D images, and then use depth information for precise localization of the targets and finally add semantic information into 3D point clouds. We apply SRM in different scenes, and the results show its higher running speed and accuracy.
References:
[1] |
R. Q. Charles, H. Su, K. Mo and L. J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).
doi: 10.1109/CVPR.2017.16. |
[2] |
R. Girshick and J. Donahue, Trevor Darrell and Jitendra Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, (2013), 580-587. |
[3] |
K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770-778.
doi: 10.1109/CVPR.2016.90. |
[4] |
M. Labbé and F. Michaud,
Long-term online multi-session graph-based splam with memory management, Autonomous Robots, 3 (2017), 1-18.
|
[5] |
M. Labbe and F. Michaud, Online global loop closure detection for large-scale multi-session graph-based SLAM, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014), 2661-2666.
doi: 10.1109/IROS.2014.6942926. |
[6] |
M. Labbé and F. Michaud,
Appearance-based loop closure detection for online large-scale and long-term operation, IEEE Transactions on Robotics, 29 (2013), 734-745.
|
[7] |
M. Labbe and F. Michaud, Memory management for real-time appearance-based loop closure detection, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2011), 1271-1276.
doi: 10.1109/IROS.2011.6094602. |
[8] |
X. Li and R. Belaroussi, Semi-dense 3d semantic mapping from monocular slam, 2016. |
[9] |
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed and C. Y. Fu, et al, SSD: Single Shot MultiBox Detector. European Conference on Computer Vision, Springer International Publishing, (2016), 21-37. |
[10] |
J. Mccormac, A. Handa, A. Davison and S. Leutenegger, Semanticfusion: dense 3d semantic mapping with convolutional neural networks, 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.
doi: 10.1109/ICRA.2017.7989538. |
[11] |
R. Mur-Artal and J. D. Tardós, Probabilistic semi-dense mapping from highly accurate feature-based monocular SLAM, Robotics: Science and Systems, (2015), 1-9.
doi: 10.15607/RSS.2015.XI.041. |
[12] |
N. Otsu,
A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9 (1979), 62-66.
doi: 10.1109/TSMC.1979.4310076. |
[13] |
J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You only look once: Unified, real-time object detection, Computer Vision and Pattern Recognition, (2016), 779-788.
doi: 10.1109/CVPR.2016.91. |
[14] |
J. Redmon and A. Farhadi, YOLO9000: Better, faster, stronger, IEEE Conference on Computer Vision and Pattern Recognition, (2017), 6517-6525.
doi: 10.1109/CVPR.2017.690. |
[15] |
J. Redmon and A. Farhadi, Yolov3: an incremental improvement, 2018. |
[16] |
S. Ren, K. He, R. Girshick and J. Sun,
Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (2017), 1137-1149.
doi: 10.1109/TPAMI.2016.2577031. |
[17] |
N. Sünderhauf, T. T. Pham, Y. Latif, M. Milford and I. Reid, Meaningful maps with object-oriented semantic mapping., Ieee/rsj International Conference on Intelligent Robots and Systems, IEEE, (2017), 5079-5085. |
[18] |
T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker and A. Davison, ElasticFusion: Dense SLAM Without A Pose Graph. Robotics: Science and Systems, 2015.
doi: 10.15607/RSS.2015.XI.001. |
show all references
References:
[1] |
R. Q. Charles, H. Su, K. Mo and L. J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).
doi: 10.1109/CVPR.2017.16. |
[2] |
R. Girshick and J. Donahue, Trevor Darrell and Jitendra Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, (2013), 580-587. |
[3] |
K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770-778.
doi: 10.1109/CVPR.2016.90. |
[4] |
M. Labbé and F. Michaud,
Long-term online multi-session graph-based splam with memory management, Autonomous Robots, 3 (2017), 1-18.
|
[5] |
M. Labbe and F. Michaud, Online global loop closure detection for large-scale multi-session graph-based SLAM, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014), 2661-2666.
doi: 10.1109/IROS.2014.6942926. |
[6] |
M. Labbé and F. Michaud,
Appearance-based loop closure detection for online large-scale and long-term operation, IEEE Transactions on Robotics, 29 (2013), 734-745.
|
[7] |
M. Labbe and F. Michaud, Memory management for real-time appearance-based loop closure detection, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2011), 1271-1276.
doi: 10.1109/IROS.2011.6094602. |
[8] |
X. Li and R. Belaroussi, Semi-dense 3d semantic mapping from monocular slam, 2016. |
[9] |
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed and C. Y. Fu, et al, SSD: Single Shot MultiBox Detector. European Conference on Computer Vision, Springer International Publishing, (2016), 21-37. |
[10] |
J. Mccormac, A. Handa, A. Davison and S. Leutenegger, Semanticfusion: dense 3d semantic mapping with convolutional neural networks, 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.
doi: 10.1109/ICRA.2017.7989538. |
[11] |
R. Mur-Artal and J. D. Tardós, Probabilistic semi-dense mapping from highly accurate feature-based monocular SLAM, Robotics: Science and Systems, (2015), 1-9.
doi: 10.15607/RSS.2015.XI.041. |
[12] |
N. Otsu,
A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9 (1979), 62-66.
doi: 10.1109/TSMC.1979.4310076. |
[13] |
J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You only look once: Unified, real-time object detection, Computer Vision and Pattern Recognition, (2016), 779-788.
doi: 10.1109/CVPR.2016.91. |
[14] |
J. Redmon and A. Farhadi, YOLO9000: Better, faster, stronger, IEEE Conference on Computer Vision and Pattern Recognition, (2017), 6517-6525.
doi: 10.1109/CVPR.2017.690. |
[15] |
J. Redmon and A. Farhadi, Yolov3: an incremental improvement, 2018. |
[16] |
S. Ren, K. He, R. Girshick and J. Sun,
Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (2017), 1137-1149.
doi: 10.1109/TPAMI.2016.2577031. |
[17] |
N. Sünderhauf, T. T. Pham, Y. Latif, M. Milford and I. Reid, Meaningful maps with object-oriented semantic mapping., Ieee/rsj International Conference on Intelligent Robots and Systems, IEEE, (2017), 5079-5085. |
[18] |
T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker and A. Davison, ElasticFusion: Dense SLAM Without A Pose Graph. Robotics: Science and Systems, 2015.
doi: 10.15607/RSS.2015.XI.001. |












[1] |
Lingshuang Kong, Changjun Yu, Kok Lay Teo, Chunhua Yang. Robust real-time optimization for blending operation of alumina production. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1149-1167. doi: 10.3934/jimo.2016066 |
[2] |
Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems and Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013 |
[3] |
Thomas Demoor, Joris Walraevens, Dieter Fiems, Stijn De Vuyst, Herwig Bruneel. Influence of real-time queue capacity on system contents in DiffServ's expedited forwarding per-hop-behavior. Journal of Industrial and Management Optimization, 2010, 6 (3) : 587-602. doi: 10.3934/jimo.2010.6.587 |
[4] |
Xiang-Sheng Wang, Luoyi Zhong. Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1055-1063. doi: 10.3934/mbe.2015.12.1055 |
[5] |
Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi. Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks and Heterogeneous Media, 2013, 8 (3) : 825-842. doi: 10.3934/nhm.2013.8.825 |
[6] |
Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial and Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243 |
[7] |
Wei Huang, Ka-Fai Cedric Yiu, Henry Y. K. Lau. Semi-definite programming based approaches for real-time tractor localization in port container terminals. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 665-680. doi: 10.3934/naco.2013.3.665 |
[8] |
Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu, Lu Li. A real-time pricing scheme considering load uncertainty and price competition in smart grid market. Journal of Industrial and Management Optimization, 2020, 16 (2) : 777-793. doi: 10.3934/jimo.2018178 |
[9] |
Chengtao Yong, Yan Huo, Chunqiang Hu, Yanfei Lu, Guanlin Jing. A real-time aggregate data publishing scheme with adaptive ω-event differential privacy. Mathematical Foundations of Computing, 2018, 1 (3) : 295-309. doi: 10.3934/mfc.2018014 |
[10] |
Tao Guan, Denghua Zhong, Bingyu Ren, Pu Cheng. Construction schedule optimization for high arch dams based on real-time interactive simulation. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1321-1342. doi: 10.3934/jimo.2015.11.1321 |
[11] |
Xiaoyong Mao, Baoguo Yu, Yingjing Shi, Rui Li. Real-time online trajectory planning and guidance for terminal area energy management of unmanned aerial vehicle. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022026 |
[12] |
Yanxue Yang, Shou-Qiang Du, Yuanyuan Chen. Real-time pricing method for smart grid based on social welfare maximization model. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022039 |
[13] |
Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial and Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431 |
[14] |
Susu Zhang, Jiancheng Ni, Lijun Hou, Zili Zhou, Jie Hou, Feng Gao. Global-Affine and Local-Specific Generative Adversarial Network for semantic-guided image generation. Mathematical Foundations of Computing, 2021, 4 (3) : 145-165. doi: 10.3934/mfc.2021009 |
[15] |
Ibrar Hussain, Haider Ali, Muhammad Shahkar Khan, Sijie Niu, Lavdie Rada. Robust region-based active contour models via local statistical similarity and local similarity factor for intensity inhomogeneity and high noise image segmentation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022014 |
[16] |
Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039 |
[17] |
Boran Hu, Zehui Cheng, Zhangbing Zhou. Web services recommendation leveraging semantic similarity computing. Mathematical Foundations of Computing, 2018, 1 (2) : 101-119. doi: 10.3934/mfc.2018006 |
[18] |
Anna Erschler. Iterated identities and iterational depth of groups. Journal of Modern Dynamics, 2015, 9: 257-284. doi: 10.3934/jmd.2015.9.257 |
[19] |
Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007 |
[20] |
Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]