[1]
|
A. Ali, S. M. Shamsuddin and A. L. Ralescu, Classification with class imbalance problem: A review, Int J Adv Soft Comput Appl, 7 (2015), 176-204.
|
[2]
|
J. Alcalá-Fdez, L. Sánchez, S. Garcia, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit and V. M. Rivas, et al., Keel: A software tool to assess evolutionary algorithms for data mining problems, Soft Computing, 13 (2009), 307-318.
|
[3]
|
C. Bunkhumpornpat, K. Sinapiromsaran and C. Lursinsap, Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proceedings of the IEEE Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 5476 (2009), 475–482.
doi: 10.1007/978-3-642-01307-2_43.
|
[4]
|
S. Barua, M. M. Islam, X. Yao and K. Murase, Mwmote–majority weighted minority oversampling technique for imbalanced data set learning, IEEE Transactions on Knowledge and Data Engineering, 26 (2014), 405-425.
doi: 10.1109/TKDE.2012.232.
|
[5]
|
A. P. Bradley, The use of the area under the roc curve in the evaluation of machine learning algorithms, Pattern Recognition, 30 (1997), 1145-1159.
doi: 10.1016/S0031-3203(96)00142-2.
|
[6]
|
N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, Smote: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16 (2002), 321-357.
doi: 10.1613/jair.953.
|
[7]
|
N. V. Chawla, A. Lazarevic, L. O. Hall and K. W. Bowyer, Smoteboost: Improving prediction of the minority class in boosting, in: European Conference on Principles of Data Mining and Knowledge Discovery, Springer, 2003,107–119.
doi: 10.1007/978-3-540-39804-2_12.
|
[8]
|
M. Galar, A. Fernandez, E. Barrenechea, H. Bustince and F. Herrera, A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches,, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42 (2012), 463-484.
doi: 10.1109/TSMCC.2011.2161285.
|
[9]
|
V. García, R. A. Mollineda and J. S. Sánchez, On the k-nn performance in a challenging scenario of imbalance and overlapping,, Pattern Analysis and Applications, 11 (2008), 269-280.
doi: 10.1007/s10044-007-0087-5.
|
[10]
|
H. He, Y. Bai, E. A. Garcia and S. Li, Adasyn: Adaptive synthetic sampling approach for imbalanced learning, in: Proceedings of the IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE, 2008, 1322–1328.
|
[11]
|
S. Hu, Y. Liang, L. Ma and Y. He, Msmote: Improving classification performance when training data is imbalanced, in: Proceedings of the Second International Workshop on Computer Science and Engineering, IEEE, 2 (2009), 13–17.
doi: 10.1109/WCSE.2009.756.
|
[12]
|
H. Han, W.-Y. Wang and B.-H. Mao, Borderline-smote: A new over-sampling method in imbalanced data sets learning, in: Proceedings of the International Conference on Intelligent Computing, Springer, 2005,878–887.
doi: 10.1007/11538059_91.
|
[13]
|
M. Krstic and M. Bjelica, Impact of class imbalance on personalized program guide performance, IEEE Transactions on Consumer Electronics, 61 (2015), 90-95.
doi: 10.1109/TCE.2015.7064115.
|
[14]
|
M. Lin, K. Tang and X. Yao, Dynamic sampling approach to training neural networks for multiclass imbalance classification, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 647-660.
|
[15]
|
W.-Z. Lu and D. Wang, Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme, Science of the Total Environment, 395 (2008), 109-116.
doi: 10.1016/j.scitotenv.2008.01.035.
|
[16]
|
W.-C. Lin, C.-F. Tsai, Y.-H. Hu and J.-S. Jhang, Clustering-based undersampling in class-imbalanced data, Information Sciences, 409/410 (2017), 17-26.
doi: 10.1016/j.ins.2017.05.008.
|
[17]
|
G. Rekha, A. K. Tyagi and V. Krishna Reddy, A wide scale classification of class imbalance problem and its solutions: A systematic literature review,, Journal of Computer Science, 15 (2019), 886-929.
doi: 10.3844/jcssp.2019.886.929.
|
[18]
|
G. Rekha, A. K. Tyagi and V. Krishna Reddy, Solving class imbalance problem using bagging, boosting techniques, with and without using noise filtering method, International Journal of Hybrid Intelligent Systems, 15 (2019), 67-76.
doi: 10.3233/HIS-190261.
|
[19]
|
F. Rayhan, S. Ahmed, A. Mahbub, M. Jani, S. Shatabda and D. M. Farid, et al., Cusboost: Cluster-based under-sampling with boosting for imbalanced classification, 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), (2017), arXiv1712.04356.
doi: 10.1109/CSITSS.2017.8447534.
|
[20]
|
S. Ruggieri, Efficient c4. 5 [classification algorithm], IEEE Transactions on Knowledge and Data Engineering, 14 (2002), 438-444.
|
[21]
|
Y. Sun, A. K. Wong and M. S. Kamel, Classification of imbalanced data: A review,, International Journal of Pattern Recognition and Artificial Intelligence, 23 (2009), 687-719.
doi: 10.1142/S0218001409007326.
|
[22]
|
C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse and A. Napolitano, Rusboost: A hybrid approach to alleviating class imbalance, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40 (2010), 185-197.
doi: 10.1109/TSMCA.2009.2029559.
|
[23]
|
R. C. Team, R: A language and environment for statistical computing [internet], vienna (austria): R foundation for statistical computing.[cited 2015 mar 23] (2012).
|
[24]
|
S. Wang and X. Yao, Diversity analysis on imbalanced data sets by using ensemble models, in: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, IEEE, 2009,324–331.
doi: 10.1109/CIDM.2009.4938667.
|