In this paper, an asymptotic formula for the so-called multivariate neural network (NN) operators has been established. As a direct consequence, a first and a second order pointwise Voronovskaja type theorem has been reached. At the end, the particular case of the NN operators activated by the logistic function has been treated in details.
Citation: |
[1] |
J. A. Adell and D. Cardenas-Morales, Quantitative generalized Voronovskaja's formulae for Bernstein polynomials, Journal of Approximation Theory, 231 (2018), 41-52.
doi: 10.1016/j.jat.2018.04.007.![]() ![]() ![]() |
[2] |
T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Applied Mathematics and Computation, 263 (2015), 223-239.
doi: 10.1016/j.amc.2015.04.060.![]() ![]() ![]() |
[3] |
T. Acar, A. Aral and I. Rasa, Approximation by k-th order modifications of Szaás-Mirakyan operators, Studia Scient. Math. Hungar., 53 (2016), 379-398.
doi: 10.1556/012.2016.53.3.1339.![]() ![]() ![]() |
[4] |
T. Acar, A. Aral and I. Rasa, The New Forms of Voronovskaya's Theorem in weighted spaces, Positivity, 20 (2016), 25-40.
doi: 10.1007/s11117-015-0338-4.![]() ![]() ![]() |
[5] |
C. Bardaro and I. Mantellini, On pointwise approximation properties of multivariate semi-discrete sampling type operators, Results in Mathematics, 72 (2017), 1449-1472.
doi: 10.1007/s00025-017-0667-7.![]() ![]() ![]() |
[6] |
F. Cao and Z. Chen, The approximation operators with sigmoidal functions, Comput. Math. Appl., 58 (2009), 758-765.
doi: 10.1016/j.camwa.2009.05.001.![]() ![]() ![]() |
[7] |
F. Cao and Z. Chen, The construction and approximation of a class of neural networks operators with ramp functions, J. Comput. Anal. Appl., 14 (2012), 101-112.
![]() ![]() |
[8] |
P. Cardaliaguet and G. Euvrard, Approximation of a function and its derivative with a neural network, Neural Networks, 5 (1992), 207-220.
doi: 10.1016/S0893-6080(05)80020-6.![]() ![]() |
[9] |
H. L. Cheang Gerald, Approximation with neural networks activated by ramp sigmoids, J. Approx. Theory, 162 (2010), 1450-1465.
doi: 10.1016/j.jat.2010.03.004.![]() ![]() ![]() |
[10] |
E. W. Cheney, W. A. Light and Y. Xu, Constructive methods of approximation by rigde functions and radial functions, Numerical Algorithms, 4 (1993), 205-223.
doi: 10.1007/BF02144104.![]() ![]() ![]() |
[11] |
D. Costarelli and A. R. Sambucini, Approximation results in Orlicz spaces for sequences of Kantorovich max-product neural network operators, Results in Mathematics, 73 (2018), Art. 15, 15 pp.
doi: 10.1007/s00025-018-0799-4.![]() ![]() ![]() |
[12] |
D. Costarelli and R. Spigler, Approximation results for neural network operators activated by sigmoidal functions, Neural Networks, 44 (2013), 101-106.
doi: 10.1016/j.neunet.2013.03.015.![]() ![]() |
[13] |
D. Costarelli and R. Spigler, Multivariate neural network operators with sigmoidal activation functions, Neural Networks, 48 (2013), 72-77.
doi: 10.1016/j.neunet.2013.07.009.![]() ![]() |
[14] |
D. Costarelli, R. Spigler and G. Vinti, A survey on approximation by means of neural network operators, Journal of NeuroTechnology, 1 (2016).
![]() |
[15] |
D. Costarelli and G. Vinti, Inverse results of approximation and the saturation order for the sampling Kantorovich series, Journal of Approximation Theory, 242 (2019), 64-82.
doi: 10.1016/j.jat.2019.03.001.![]() ![]() ![]() |
[16] |
D. Costarelli and G. Vinti, Voronovskaja type theorems and high order convergence neural network operators with sigmoidal functions, in: Mediterranean Journal of Mathematics, (2020).
![]() |
[17] |
F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory Viewpoint, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9780511618796.![]() ![]() ![]() |
[18] |
G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989), 303-314.
doi: 10.1007/BF02551274.![]() ![]() ![]() |
[19] |
N. J. Guliyev and V. E. Ismailov, On the approximation by single hidden layer feedforward neural networks with fixed weights,, Neural Networks, 98 (2018), 296-304.
doi: 10.1016/j.neunet.2017.12.007.![]() ![]() |
[20] |
N. J. Guliyev and V. E. Ismailov, Approximation capability of two hidden layer feedforward neural networks with fixed weights, Neurocomputing, 316 (2018), 262-269.
doi: 10.1016/j.neucom.2018.07.075.![]() ![]() |
[21] |
A. Iliev and N. Kyurkchiev, On the Hausdor distance between the Heaviside function and some transmuted activation functions, Mathematical Modeling and Applications, 2 (2016), 1-5.
![]() |
[22] |
A. Iliev, N. Kyurkchiev and S. Markov, On the approximation of the cut and step functions by logistic and Gompertz functions, BIOMATH, 4 (2015), 201510101, 12pp.
doi: 10.11145/j.biomath.2015.10.101.![]() ![]() ![]() |
[23] |
V. E. Ismailov, On the approximation by neural networks with bounded number of neurons in hidden layers,, J. Math. Anal. Appl., 417 (2014), 963-969.
doi: 10.1016/j.jmaa.2014.03.092.![]() ![]() ![]() |
[24] |
P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 90 (1953), 961-964.
![]() ![]() |
[25] |
J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61 (2015), 85-117.
doi: 10.1016/j.neunet.2014.09.003.![]() ![]() |
[26] |
S. Smale and D. X. Zhou, Learning theory estimates via integral operators and their approximations, Constructive Approximation, 26 (2007), 153-172.
doi: 10.1007/s00365-006-0659-y.![]() ![]() ![]() |
[27] |
Y. Zhang, J. Wu, Z. Cai, B. Du and P.S. Yu, An unsupervised parameter learning model for RVFL neural network,, Neural Networks, 112 (2019), 85-97.
doi: 10.1016/j.neunet.2019.01.007.![]() ![]() |