Advanced Search
Article Contents
Article Contents

Inpainting via sparse recovery with directional constraints

  • * Corresponding author: Xuemei Chen

    * Corresponding author: Xuemei Chen 
The first author is supported by NSF DMS-2050028
Abstract Full Text(HTML) Figure(11) / Table(2) Related Papers Cited by
  • Image inpainting is a particular case of image completion problem. We describe a novel method allowing to amend the general scenario of using sparse or TV-based recovery for inpainting purposes by an efficient use of adaptive one-dimensional directional "sensing" into the unknown domain. We analyze the smoothness of the image near each pixel on the boundary of the unknown domain and formulate linear constraints designed to promote smooth transitions from the known domain in the directions where smooth behavior have been detected. We include a theoretical result relaxing the widely known sufficient condition of sparse recovery based on coherence, as well as observations on how adding the directional constraints can improve the well-posedness of sparse inpainting.

    The numerical implementation of our method is based on ADMM. Examples of inpainting of natural images and binary images with edges crossing the unknown domain demonstrate significant improvement of recovery quality in the presence of adaptive directional constraints. We conclude that the introduced framework is general enough to offer a lot of flexibility and be successfully utilized in a multitude of image recovery scenarios.

    Mathematics Subject Classification: Primary: 65F45, 65K10; Secondary: 94A16.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  An image to be inpainted

    Figure 2.  Forming boundary equations

    Figure 3.  Forming boundary equations: pick the best direction

    Figure 4.  Recovery via directional sensing only. (a) Image with a thin missing domain. (b) 'DB-2', all smooth directions per pixel included, both centered and shifted equations used. (c) 'DB-2', all smooth directions per pixel included, only centered equations used. (d) 'DB-2', one direction per pixel included, only centered equations used could be formed as the filter has length 2. (e) 'DB-4', all smooth directions included, both centered and shifted equations used

    Figure 5.  Examples of directional constraints adaptively formulated for the inpainting examples discussed further in the text. In both cases the 'DB2' filter of length 4 was used to form centered equations. Green dots indicate the unknown pixels around which the constraints were formed. Red dots indicate other pixels present in those constraints. The constraints are shown only for some pixels to avoid overcrowding the images. The actual results of inpainting appear later in Figures 6 and 9

    Figure 9.  Text removal of Pepper, $ 128\times128 $

    Figure 6.  Inpaint a missing block of a vertical stripe, $ 64\times64 $

    Figure 7.  Inpainting a thin missing block in an image with repetitive pattern of slanted stripes, $ 64\times64 $

    Figure 8.  Inpaint a missing annulus of a sectional image, $ 128\times128 $

    Figure 10.  Smooth stripes inpainting, $ 64\times64 $

    Figure 11.  Text removal of a colored image, $ 128\times128 $

    Table 1.  Here $ \sqrt{\beta} = .75 $, $ F $ is the reshaped 2D DB-4 wavelet basis matrix, the first filter $ h $ is a high pass DB-2 filter, all smooth directions used and only centered equations included, the second filter added is a high pass DB-4 filter

    Cosine Coherence $ \mu_1 $ Min singular value Max singular value
    $ P_{\Lambda} F $ 0.8541 3.8339 0 1
    $ SF $ (1 filter) 0.4799 0.5888 0.0455 1.5255
    $ S_2F $ (2 filters) 0.3913 0.4480 0.0937 1.9837
     | Show Table
    DownLoad: CSV

    Table 2.  Here $ \sqrt{\beta} = .75 $, $ F $ is the reshaped 2D binary Weyl basis matrix, the filter $ h $ is a high pass DB-2 filter, all smooth directions used and only centered equations included

    Cosine Coherence $ \mu_1 $ Min singular value Max singular value
    $ P_{\Lambda} F $ 0.0667 0.0667 0 1
    $ SF $ (1 filter) 0.0452 0.0457 0.0455 1.5255
     | Show Table
    DownLoad: CSV
  • [1] A. AldroubiX. Chen and A. M. Powell, Perturbations of measurement matrices and dictionaries in compressed sensing, Appl. Comput. Harmon. Anal., 33 (2012), 282-291.  doi: 10.1016/j.acha.2011.12.002.
    [2] C. BaoH. Ji and Z. Shen, Convergence analysis for iterative data-driven tight frame construction scheme, Appl. Comput. Harmon. Anal., 38 (2015), 510-523.  doi: 10.1016/j.acha.2014.06.007.
    [3] M. Bertalmio, A. L. Bertozzi and G. Sapiro, Navier-Stokes, fluid dynamics, and image and video inpainting, Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, 2001,355–362. doi: 10.1109/CVPR.2001.990497.
    [4] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, Image inpainting, Proc. 27th Conference on Computer Graphics and Interactive Techniques, 2000,417–424. doi: 10.21236/ADA437378.
    [5] M. BertalmioL. VeseG. Sapiro and S. Osher, Simultaneous structure and texture image inpainting, IEEE Trans. Image Processing, 12 (2003), 882-889.  doi: 10.1109/TIP.2003.815261.
    [6] A. BertozziS. Esedoḡlu and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), 913-936.  doi: 10.1137/060660631.
    [7] J.-F. CaiR. H. Chan and Z. Shen, A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24 (2008), 131-149.  doi: 10.1016/j.acha.2007.10.002.
    [8] J.-F. CaiH. JiZ. Shen and G.-B. Ye, Data-driven tight frame construction and image denoising, Appl. Comput. Harmon. Anal., 37 (2014), 89-105.  doi: 10.1016/j.acha.2013.10.001.
    [9] J.-F. CaiS. Osher and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Model. Simul., 8 (2009/10), 337-369.  doi: 10.1137/090753504.
    [10] E. J. CandèsY. C. EldarD. Needell and P. Randall, Compressed sensing with coherent and redundant dictionaries, Appl. Comput. Harmon. Anal., 31 (2011), 59-73.  doi: 10.1016/j.acha.2010.10.002.
    [11] E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, J. ACM, 58 (2011), 37pp. doi: 10.1145/1970392.1970395.
    [12] E. J. CandèsJ. K. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59 (2006), 1207-1223.  doi: 10.1002/cpa.20124.
    [13] P. G. Casazza, The art of frame theory, Taiwanese J. Math., 4 (2000), 129-201.  doi: 10.11650/twjm/1500407227.
    [14] T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math., 62 (2001/02), 1019-1043.  doi: 10.1137/S0036139900368844.
    [15] A. CriminisiP. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting, IEEE Trans. Image Processing, 13 (2004), 1200-1212.  doi: 10.1109/TIP.2004.833105.
    [16] J. Darbon and M. Sigelle, A fast and exact algorithm for total variation minimization, in Pattern Recognition and Image Analysis, Lecture Notes in Computer Science, 3522, Springer, 2005,351–359. doi: 10.1007/11492429_43.
    [17] J. Dobrosotskaya and W. Guo, Data adaptive multi-scale representations for image analysis, in Wavelets and Sparsity XVIII, 11138, International Society for Optics and Photonics, 2019. doi: 10.1117/12.2529695.
    [18] B. Dong and Z. Shen, Image restoration: A data-driven perspective, Proceedings of the 8th International Congress on Industrial and Applied Mathematics, Higher Ed. Press, Beijing, 2015, 65-108.
    [19] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.  doi: 10.1109/TIT.2006.871582.
    [20] A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999. doi: 10.1109/ICCV.1999.790383.
    [21] M. EladJ.-L. StarckP. Querre and D.-L. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Appl. Comput. Harmon. Anal., 19 (2005), 340-358.  doi: 10.1016/j.acha.2005.03.005.
    [22] B. HanG. Kutyniok and Z. Shen, Adaptive multiresolution analysis structures and shearlet systems, SIAM J. Numer. Anal., 49 (2011), 1921-1946.  doi: 10.1137/090780912.
    [23] E. J. KingG. Kutyniok and X. Zhuang, Analysis of inpainting via clustered sparsity and microlocal analysis, J. Math. Imaging Vision, 48 (2014), 205-234.  doi: 10.1007/s10851-013-0422-y.
    [24] M. LustigD. Donoho and J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), 1182-1195.  doi: 10.1002/mrm.21391.
    [25] S. MallatA Wavelet Tour of Signal Processing, Elsevier/Academic Press, Amsterdam, 2009.  doi: 10.1016/B978-0-12-374370-1.X0001-8.
    [26] Y. MeyerWavelets and Operators, Cambridge Studies in Advanced Mathematics, 37, Cambridge University Press, Cambridge, 1992. 
    [27] N. Parikh and S. Boyd, Proximal Algorithms, Now Foundations and Trends, 2014,128pp. doi: 10.1561/9781601987174.
    [28] Y. QuanH. Ji and Z. Shen, Data-driven multi-scale non-local wavelet frame construction and image recovery, J. Sci. Comput., 63 (2015), 307-329.  doi: 10.1007/s10915-014-9893-2.
    [29] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [30] S. F. D. Waldron, An Introduction to Finite Tight Frames, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, 2018. doi: 10.1007/978-0-8176-4815-2.
    [31] Y. WangJ. YangW. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.  doi: 10.1137/080724265.
    [32] Z. Xu and J. Sun, Image inpainting by patch propagation using patch sparsity, IEEE Trans. Image Process., 19 (2010), 1153-1165.  doi: 10.1109/TIP.2010.2042098.
  • 加载中




Article Metrics

HTML views(569) PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint