Here we present Iyengar type integral inequalities. At the univariate level they involve $ \psi $-Hilfer left and right fractional derivatives. At the multivariate level they involve Hilfer left and right fractional derivatives, and they deal with radial and non-radial functions on the ball and spherical shell. All estimates are with respect to norms $ \left \Vert \cdot \right \Vert _{p} $, $ 1\leq p\leq \infty $. At the end we provide an application.
Citation: |
[1] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.
doi: 10.1016/j.cnsns.2016.09.006.![]() ![]() ![]() |
[2] |
S. S. Dragomir, Inequalities for the Riemann-Stieljes integral of $\left( p,q\right) -H-$dominated integrators with applications, Appl. Math. E-Notes, 15 (2015), 243-260.
![]() ![]() |
[3] |
K. S. K. Iyengar, Note on an inequality, Math. Stud., 6 (1938), 75-76.
![]() |
[4] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differentiation Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
![]() ![]() |
[5] |
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont. -London, 1966.
![]() ![]() |
[6] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
![]() ![]() |
[7] |
D. W. Stroock, A Concise Introduction to the Theory of Integration, Birkhaüser Boston, Inc, Boston, MA, 1999.
![]() ![]() |
[8] |
Ž. Tomovski, R. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec Funct., 21 (2010), 797-814.
doi: 10.1080/10652461003675737.![]() ![]() ![]() |
[9] |
J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\psi $-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.
doi: 10.1016/j.cnsns.2018.01.005.![]() ![]() ![]() |