\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Iyengar-Hilfer fractional inequalities

Abstract Full Text(HTML) Related Papers Cited by
  • Here we present Iyengar type integral inequalities. At the univariate level they involve $ \psi $-Hilfer left and right fractional derivatives. At the multivariate level they involve Hilfer left and right fractional derivatives, and they deal with radial and non-radial functions on the ball and spherical shell. All estimates are with respect to norms $ \left \Vert \cdot \right \Vert _{p} $, $ 1\leq p\leq \infty $. At the end we provide an application.

    Mathematics Subject Classification: 26A33, 26D10, 26D15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.  doi: 10.1016/j.cnsns.2016.09.006.
    [2] S. S. Dragomir, Inequalities for the Riemann-Stieljes integral of $\left( p,q\right) -H-$dominated integrators with applications, Appl. Math. E-Notes, 15 (2015), 243-260. 
    [3] K. S. K. Iyengar, Note on an inequality, Math. Stud., 6 (1938), 75-76. 
    [4] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differentiation Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
    [5] W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont. -London, 1966.
    [6] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
    [7] D. W. Stroock, A Concise Introduction to the Theory of Integration, Birkhaüser Boston, Inc, Boston, MA, 1999.
    [8] Ž. TomovskiR. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec Funct., 21 (2010), 797-814.  doi: 10.1080/10652461003675737.
    [9] J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\psi $-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.  doi: 10.1016/j.cnsns.2018.01.005.
  • 加载中
SHARE

Article Metrics

HTML views(551) PDF downloads(211) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return