doi: 10.3934/mfc.2021017
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Sliding mode observer based control for T-S fuzzy descriptor systems

1. 

Qinhuangdao Vocational and Technical College, Qinhuangdao, Hebei, 066100, China

2. 

School of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei, 066100, China

*Corresponding author: Dongyun Wang

Received  June 2021 Revised  August 2021 Early access September 2021

In this paper, the problem of sliding mode observer (SMO) based sliding mode control (SMC) for nonlinear descriptor delay systems is studied. First, based on the T-S fuzzy dynamic modeling technique, the nonlinear descriptor system is transformed into a combination of local linear models. Then, a integral-type sliding surface (ITSS) based SMO is constructed for the error system. In the sequel, sufficient linear matrix inequality (LMI) conditions are established to ensure the admissibility of the sliding motions and obtain the observer gain matrix. Furthermore, two novel SMC laws are developed to ensure the reachability conditions and stabilize the descriptor systems. Finally, simulations are provided to show the effectiveness of the method.

Citation: Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021017
References:
[1]

U. M. Al-SaggafM. Bettayeb and S. Djennoune, Super-twisting algorithm-based sliding mode observer for synchronization of nonlinear incommensurate fractional-order chaotic systems subject to unknown inputs, Arab. J. Sci. Eng., 42 (2017), 3065-3075.  doi: 10.1007/s13369-017-2548-5.  Google Scholar

[2]

B. ChenC. LinX. Liu and K. Liu, Observer-based adaptive fuzzy control for a class of nonlinear delayed systems, IEEE Trans. Syst. Man, and Cybernetics: Systems, 46 (2016), 27-39.  doi: 10.1109/TSMC.2015.2420543.  Google Scholar

[3]

M. Darouach, Observers and observer-based control for descriptor systems revisited, IEEE Trans. Automat. Control, 59 (2014), 1367-1373.  doi: 10.1109/TAC.2013.2292720.  Google Scholar

[4] L. Dai, Singular Control Systems, Springer-Verlag, Berlin, 1989.  doi: 10.1007/BFb0002475.  Google Scholar
[5] C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor-Francis, London, UK, 1998.  doi: 10.1201/9781498701822.  Google Scholar
[6]

E. Fridman and U. Shaked, A descriptor system approach to $H\infty$ control of linear time-delay systems, IEEE Trans. Automat. Control, 47 (2002), 253-270.  doi: 10.1109/9.983353.  Google Scholar

[7]

Q. GaoG. FengZ. Y. Xi and Y. Wang, Robust $H\infty$ control of T-S fuzzy time-delay systems via a new sliding-mode control scheme, IEEE Transactions on Fuzzy Systems, 22 (2014), 459-465.  doi: 10.1109/TFUZZ.2013.2256914.  Google Scholar

[8]

T. M. GuerraV. Estrada-Manzo and Z. Lendek, Observer design for Takagi-Sugeno descriptor models: An LMI approach, Automatica Automatica J. IFAC, 52 (2015), 154-159.  doi: 10.1016/j.automatica.2014.11.008.  Google Scholar

[9]

K. Gu, V. Kharitonov and J. Chen, Stability of Time-Delay Systems, Control Engineering. Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0039-0.  Google Scholar

[10]

C. S. HanG. J. ZhangL. G. Wu and Q. S. Zeng, Sliding mode control of T-S fuzzy descriptor systems with time-delay, J. Franklin Inst., 349 (2012), 1430-1444.  doi: 10.1016/j.jfranklin.2011.07.001.  Google Scholar

[11]

K. HfaiedhK. Dahech and T. Damak, A sliding mode observer for uncertain nonlinear systems based on multiple modes approach, International Journal of Automation and Computing, 14 (2017), 202-212.  doi: 10.1007/s11633-016-0970-x.  Google Scholar

[12]

M. KlugE. B. CastelanV. J. S. Leite and L. F. P. Silva, Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models, Fuzzy Sets and Systems, 263 (2015), 92-111.  doi: 10.1016/j.fss.2014.05.019.  Google Scholar

[13]

M. KchaouH. Gassara and A. El-Hajjaji, Robust observer-based control design for uncertain singular systems with time-delay, International J. Adapt. Control Signal Process., 28 (2014), 169-183.  doi: 10.1002/acs.2409.  Google Scholar

[14]

J. H. LiQ. L. ZhangX. G. Yan and S. K. Spurgeon, Integral sliding mode control for Markovian jump T-S fuzzy descriptor systems based on the super-twisting algorithm, IET Control Theory Appl., 11 (2017), 1134-1143.  doi: 10.1049/iet-cta.2016.0862.  Google Scholar

[15]

M. Liu and P. Shi, Sensor fault estimation and tolerant control for Ito stochastic systems with a descriptor sliding mode approach, Automatica J. IFAC, 49 (2013), 1242-1250.  doi: 10.1016/j.automatica.2013.01.030.  Google Scholar

[16]

F. R. Lopez-EstradaC. M. Astorga-ZaragozaD. TheilliolJ. C. PonsartG. Valencia-Palomo and L. Torres, Observer synthesis for a class of Takagi-Sugeno descriptor system with unmeasurable premise variable. Application to fault diagnosis, Internat. J. Systems Sci., 48 (2017), 3419-3430.  doi: 10.1080/00207721.2017.1384517.  Google Scholar

[17]

Q. LiQ. L. ZhangY. J. Zhang and Y. C. An, Observer-based passive control for descriptor systems with time-delay, J. Syst. Engineering and Electronics, 20 (2009), 120-128.   Google Scholar

[18]

H. Y. LiJ. H. WangH. K. LamQ. Zhou and H. P. Du, Adaptive sliding mode control for interval type-2 fuzzy systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46 (2016), 1654-1663.  doi: 10.1109/TSMC.2016.2531676.  Google Scholar

[19]

R. C. Li and Y. Yang, Fault tolerant control for T-S fuzzy stochastic singular systems, IEEE Transactions on Fuzzy Systems, (2020), 1–1. doi: 10.1109/TFUZZ.2020.3029303.  Google Scholar

[20]

Y. C. MaX. R. Jia and Q. L. Zhang, Robust observer-based finite-time $H\infty$ control for discrete-time singular Markovian jumping system with time delay and actuator saturation, Nonlinear Anal. Hybrid Syst., 28 (2018), 1-22.  doi: 10.1016/j.nahs.2017.10.008.  Google Scholar

[21]

S. Q. MaZ. Cheng and C. Zhang, Delay-dependent robust stability and stabilization for uncertain discrete singular systems with time-varying delays, IET Control Theory and Appl., 1 (2007), 1086-1095.  doi: 10.1049/iet-cta:20060131.  Google Scholar

[22]

J. H. Li and Q. L. Zhang, An integral sliding mode control approach to observer-based stabilization of stochastic Ito descriptor systems, Neurocomputing, 173 (2016), 1330-1340.  doi: 10.1016/j.neucom.2015.09.006.  Google Scholar

[23]

R. C. LiY. Yang and Q. L. Zhang, Neural network based adaptive SMO design for T-S fuzzy descriptor systems, IEEE Transactions on Fuzzy Systems, 28 (2020), 2605-2618.  doi: 10.1109/TFUZZ.2019.2945238.  Google Scholar

[24]

I. R. Petersen, A stabilization algorithm for a class of uncertain linear systems, Systems Control Lett., 8 (1987), 351-357.  doi: 10.1016/0167-6911(87)90102-2.  Google Scholar

[25]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its application to modeling and control, Readings in Fuzzy Sets for Intelligent Systems, (1993), 387–403. doi: 10.1016/B978-1-4832-1450-4.50045-6.  Google Scholar

[26] V. Utkin, Sliding Mode in Control and Optimization, Springer-Verlag, Berlin, Germany, 1992.  doi: 10.1007/978-3-642-84379-2.  Google Scholar
[27]

C. P. Tan and C. Edwards, An LMI approach for designing sliding mode observers, Internat. J. Control, 74 (2001), 1559-1568.  doi: 10.1080/00207170110081723.  Google Scholar

[28]

C. P. Tan and C. Edwards, Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, Internat. J. Robust Nonlinear Control, 13 (2003), 443-463.  doi: 10.1002/rnc.723.  Google Scholar

[29]

X. H. WangC. P. Tan and D. H. Zhou, A novel sliding mode observer for state and fault estimation in systems not satisfying matching and minimum phase conditions, Automatica J. IFAC, 79 (2017), 290-295.  doi: 10.1016/j.automatica.2017.01.027.  Google Scholar

[30]

S. Y. XuP. V. DoorenR. Stefan and J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Trans. Automat. Control, 47 (2002), 1122-1128.  doi: 10.1109/TAC.2002.800651.  Google Scholar

[31]

S. YinH. J. GaoJ. B. Qiu and O Kaynak, Descriptor reduced-order sliding mode observers design for switched systems with sensor and actuator faults, Automatica J. IFAC, 76 (2017), 282-292.  doi: 10.1016/j.automatica.2016.10.025.  Google Scholar

[32]

Y. ZhangQ. L. Zhang and G. F. Zhang, $H\infty$ control of T-S fuzzy fish population logistic model with the invasion of alien species, Neurocomputing, 173 (2016), 724-733.   Google Scholar

[33]

H. B. ZhangY. Y. Shen and G. Feng, Delay-dependent stability and $H\infty$ control for a class of fuzzy descriptor systems with time-delay, Fuzzy Sets and Systems, 160 (2009), 1689-1707.  doi: 10.1016/j.fss.2008.09.014.  Google Scholar

show all references

References:
[1]

U. M. Al-SaggafM. Bettayeb and S. Djennoune, Super-twisting algorithm-based sliding mode observer for synchronization of nonlinear incommensurate fractional-order chaotic systems subject to unknown inputs, Arab. J. Sci. Eng., 42 (2017), 3065-3075.  doi: 10.1007/s13369-017-2548-5.  Google Scholar

[2]

B. ChenC. LinX. Liu and K. Liu, Observer-based adaptive fuzzy control for a class of nonlinear delayed systems, IEEE Trans. Syst. Man, and Cybernetics: Systems, 46 (2016), 27-39.  doi: 10.1109/TSMC.2015.2420543.  Google Scholar

[3]

M. Darouach, Observers and observer-based control for descriptor systems revisited, IEEE Trans. Automat. Control, 59 (2014), 1367-1373.  doi: 10.1109/TAC.2013.2292720.  Google Scholar

[4] L. Dai, Singular Control Systems, Springer-Verlag, Berlin, 1989.  doi: 10.1007/BFb0002475.  Google Scholar
[5] C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor-Francis, London, UK, 1998.  doi: 10.1201/9781498701822.  Google Scholar
[6]

E. Fridman and U. Shaked, A descriptor system approach to $H\infty$ control of linear time-delay systems, IEEE Trans. Automat. Control, 47 (2002), 253-270.  doi: 10.1109/9.983353.  Google Scholar

[7]

Q. GaoG. FengZ. Y. Xi and Y. Wang, Robust $H\infty$ control of T-S fuzzy time-delay systems via a new sliding-mode control scheme, IEEE Transactions on Fuzzy Systems, 22 (2014), 459-465.  doi: 10.1109/TFUZZ.2013.2256914.  Google Scholar

[8]

T. M. GuerraV. Estrada-Manzo and Z. Lendek, Observer design for Takagi-Sugeno descriptor models: An LMI approach, Automatica Automatica J. IFAC, 52 (2015), 154-159.  doi: 10.1016/j.automatica.2014.11.008.  Google Scholar

[9]

K. Gu, V. Kharitonov and J. Chen, Stability of Time-Delay Systems, Control Engineering. Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0039-0.  Google Scholar

[10]

C. S. HanG. J. ZhangL. G. Wu and Q. S. Zeng, Sliding mode control of T-S fuzzy descriptor systems with time-delay, J. Franklin Inst., 349 (2012), 1430-1444.  doi: 10.1016/j.jfranklin.2011.07.001.  Google Scholar

[11]

K. HfaiedhK. Dahech and T. Damak, A sliding mode observer for uncertain nonlinear systems based on multiple modes approach, International Journal of Automation and Computing, 14 (2017), 202-212.  doi: 10.1007/s11633-016-0970-x.  Google Scholar

[12]

M. KlugE. B. CastelanV. J. S. Leite and L. F. P. Silva, Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models, Fuzzy Sets and Systems, 263 (2015), 92-111.  doi: 10.1016/j.fss.2014.05.019.  Google Scholar

[13]

M. KchaouH. Gassara and A. El-Hajjaji, Robust observer-based control design for uncertain singular systems with time-delay, International J. Adapt. Control Signal Process., 28 (2014), 169-183.  doi: 10.1002/acs.2409.  Google Scholar

[14]

J. H. LiQ. L. ZhangX. G. Yan and S. K. Spurgeon, Integral sliding mode control for Markovian jump T-S fuzzy descriptor systems based on the super-twisting algorithm, IET Control Theory Appl., 11 (2017), 1134-1143.  doi: 10.1049/iet-cta.2016.0862.  Google Scholar

[15]

M. Liu and P. Shi, Sensor fault estimation and tolerant control for Ito stochastic systems with a descriptor sliding mode approach, Automatica J. IFAC, 49 (2013), 1242-1250.  doi: 10.1016/j.automatica.2013.01.030.  Google Scholar

[16]

F. R. Lopez-EstradaC. M. Astorga-ZaragozaD. TheilliolJ. C. PonsartG. Valencia-Palomo and L. Torres, Observer synthesis for a class of Takagi-Sugeno descriptor system with unmeasurable premise variable. Application to fault diagnosis, Internat. J. Systems Sci., 48 (2017), 3419-3430.  doi: 10.1080/00207721.2017.1384517.  Google Scholar

[17]

Q. LiQ. L. ZhangY. J. Zhang and Y. C. An, Observer-based passive control for descriptor systems with time-delay, J. Syst. Engineering and Electronics, 20 (2009), 120-128.   Google Scholar

[18]

H. Y. LiJ. H. WangH. K. LamQ. Zhou and H. P. Du, Adaptive sliding mode control for interval type-2 fuzzy systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46 (2016), 1654-1663.  doi: 10.1109/TSMC.2016.2531676.  Google Scholar

[19]

R. C. Li and Y. Yang, Fault tolerant control for T-S fuzzy stochastic singular systems, IEEE Transactions on Fuzzy Systems, (2020), 1–1. doi: 10.1109/TFUZZ.2020.3029303.  Google Scholar

[20]

Y. C. MaX. R. Jia and Q. L. Zhang, Robust observer-based finite-time $H\infty$ control for discrete-time singular Markovian jumping system with time delay and actuator saturation, Nonlinear Anal. Hybrid Syst., 28 (2018), 1-22.  doi: 10.1016/j.nahs.2017.10.008.  Google Scholar

[21]

S. Q. MaZ. Cheng and C. Zhang, Delay-dependent robust stability and stabilization for uncertain discrete singular systems with time-varying delays, IET Control Theory and Appl., 1 (2007), 1086-1095.  doi: 10.1049/iet-cta:20060131.  Google Scholar

[22]

J. H. Li and Q. L. Zhang, An integral sliding mode control approach to observer-based stabilization of stochastic Ito descriptor systems, Neurocomputing, 173 (2016), 1330-1340.  doi: 10.1016/j.neucom.2015.09.006.  Google Scholar

[23]

R. C. LiY. Yang and Q. L. Zhang, Neural network based adaptive SMO design for T-S fuzzy descriptor systems, IEEE Transactions on Fuzzy Systems, 28 (2020), 2605-2618.  doi: 10.1109/TFUZZ.2019.2945238.  Google Scholar

[24]

I. R. Petersen, A stabilization algorithm for a class of uncertain linear systems, Systems Control Lett., 8 (1987), 351-357.  doi: 10.1016/0167-6911(87)90102-2.  Google Scholar

[25]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its application to modeling and control, Readings in Fuzzy Sets for Intelligent Systems, (1993), 387–403. doi: 10.1016/B978-1-4832-1450-4.50045-6.  Google Scholar

[26] V. Utkin, Sliding Mode in Control and Optimization, Springer-Verlag, Berlin, Germany, 1992.  doi: 10.1007/978-3-642-84379-2.  Google Scholar
[27]

C. P. Tan and C. Edwards, An LMI approach for designing sliding mode observers, Internat. J. Control, 74 (2001), 1559-1568.  doi: 10.1080/00207170110081723.  Google Scholar

[28]

C. P. Tan and C. Edwards, Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, Internat. J. Robust Nonlinear Control, 13 (2003), 443-463.  doi: 10.1002/rnc.723.  Google Scholar

[29]

X. H. WangC. P. Tan and D. H. Zhou, A novel sliding mode observer for state and fault estimation in systems not satisfying matching and minimum phase conditions, Automatica J. IFAC, 79 (2017), 290-295.  doi: 10.1016/j.automatica.2017.01.027.  Google Scholar

[30]

S. Y. XuP. V. DoorenR. Stefan and J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Trans. Automat. Control, 47 (2002), 1122-1128.  doi: 10.1109/TAC.2002.800651.  Google Scholar

[31]

S. YinH. J. GaoJ. B. Qiu and O Kaynak, Descriptor reduced-order sliding mode observers design for switched systems with sensor and actuator faults, Automatica J. IFAC, 76 (2017), 282-292.  doi: 10.1016/j.automatica.2016.10.025.  Google Scholar

[32]

Y. ZhangQ. L. Zhang and G. F. Zhang, $H\infty$ control of T-S fuzzy fish population logistic model with the invasion of alien species, Neurocomputing, 173 (2016), 724-733.   Google Scholar

[33]

H. B. ZhangY. Y. Shen and G. Feng, Delay-dependent stability and $H\infty$ control for a class of fuzzy descriptor systems with time-delay, Fuzzy Sets and Systems, 160 (2009), 1689-1707.  doi: 10.1016/j.fss.2008.09.014.  Google Scholar

Figure 1.  Trajectories of the open-loop system
Figure 2.  Trajectories of the open-loop system
Figure 3.  Trajectories of the error system
Figure 4.  Trajectories of the closed-loop system
Figure 5.  Sliding surfaces
[1]

Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006

[2]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[3]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[4]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[5]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[6]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[7]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2021, 11 (4) : 905-934. doi: 10.3934/mcrf.2020051

[8]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[9]

Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi. An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences & Engineering, 2008, 5 (2) : 337-354. doi: 10.3934/mbe.2008.5.337

[10]

Qi Gong, I. Michael Ross, Wei Kang. A pseudospectral observer for nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 589-611. doi: 10.3934/dcdsb.2007.8.589

[11]

Ruikuan Liu, Dongpei Zhang. Dynamic transitions for the S-K-T competition system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021277

[12]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 4003-4039. doi: 10.3934/dcdsb.2017205

[13]

Pierdomenico Pepe. A nonlinear version of Halanay's inequality for the uniform convergence to the origin. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021045

[14]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[15]

Shyan-Shiou Chen, Chang-Yuan Cheng. Delay-induced mixed-mode oscillations in a 2D Hindmarsh-Rose-type model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 37-53. doi: 10.3934/dcdsb.2016.21.37

[16]

Chengzhi Li, Jianquan Li, Zhien Ma. Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1107-1116. doi: 10.3934/dcdsb.2015.20.1107

[17]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[18]

Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271

[19]

Tomás Caraballo, Renato Colucci, Luca Guerrini. On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2703-2727. doi: 10.3934/cpaa.2018128

[20]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

 Impact Factor: 

Metrics

  • PDF downloads (92)
  • HTML views (113)
  • Cited by (0)

Other articles
by authors

[Back to Top]