
-
Previous Article
On bivariate Jain operators
- MFC Home
- This Issue
-
Next Article
Preface: Special issue on approximation by linear and nonlinear operators with applications. Part Ⅱ
A new kind of Bi-variate $ \lambda $ -Bernstein-Kantorovich type operator with shifted knots and its associated GBS form
1. | Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee - 247667, India |
2. | Department of Mathematics, University of Prishtina, Prishtina, Kosovo |
In this paper, we introduce a bi-variate case of a new kind of $ \lambda $-Bernstein-Kantorovich type operator with shifted knots defined by Rahman et al. [
References:
[1] |
A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., 202 (2018), Paper No. 202, 12 pp.
doi: 10.1186/s13660-018-1795-7. |
[2] |
P. N. Agrawal, B. Baxhaku and R. Shukla,
On q-analogue of a parametric generalization of Baskakov operators, Math. Methods Appl. Sci., 44 (2021), 5989-6004.
doi: 10.1002/mma.7163. |
[3] |
R. P. Agarwal and V. Gupta, On $q$-analogue of a complex summation-integral type operators in compact disk, J. Inequal. Appl., 2012 (2012), Article number: 111.
doi: 10.1186/1029-242X-2012-111. |
[4] |
P. N. Agrawal and N. Ispir,
Degree of approximation for bivariate Chlodowsky-Szász-Charlier type operators, Results Math., 69 (2016), 365-385.
doi: 10.1007/s00025-015-0495-6. |
[5] |
P. N. Agrawal, N. Ispir and A. Kajla,
GBS operators of Lupaş-Durrmeyer type based on Pólya distribution, Results Math., 69 (2016), 397-418.
doi: 10.1007/s00025-015-0507-6. |
[6] |
G. A. Anastassiou and S. G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Birkhäuser Boston, Inc., Boston, MA, 2000.
doi: 10.1007/978-1-4612-1360-4. |
[7] |
A. Aral and V. Gupta,
On the Durrmeyer type modification of the $q$-Baskakov type operators, Nonlinear Anal., 72 (2010), 1171-1180.
doi: 10.1016/j.na.2009.07.052. |
[8] |
C. Badea, I. Badea, C. Cottin and H. H. Gonska,
Notes on degree of approximation of B-continuous and B-differentiable functions, Approx. Theory Appl., 4 (1988), 95-108.
|
[9] |
C. Badea, I. Badea and H. H. Gonska,
A test function theorem and approximation by pseudopolynomials, Bull. Aust. Math. Soc., 34 (1986), 53-64.
doi: 10.1017/S0004972700004494. |
[10] |
C. Badea and C. Cottin,
Korovkin-type theorem for generalized boolean sum operators, In Colloq. Math. Soc. Jńos Bolyai, North-Holland, Amsterdam, 58 (1991), 51-67.
|
[11] |
D. Bărbosu,
Kantorovich-Schurer bivariate operators, Miskolc Math. Notes, 5 (2004), 129-136.
doi: 10.18514/MMN.2004.71. |
[12] |
D. Bărbosu, A.-M. Acu and C. V. Muraru,
On certain GBS-Durrmeyer operators based on $q$-integers, Turk. J. Math., 41 (2017), 368-380.
doi: 10.3906/mat-1601-34. |
[13] |
D. Bărbosu and C. V. Muraru,
Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on $q$-integers, Appl. Math. Comput., 259 (2015), 80-87.
doi: 10.1016/j.amc.2015.02.030. |
[14] |
D. Bărbosu and O. T. Pop,
A note on the GBS Bernstein's approximation formula, Annals Univ. of Craiova, Math. Comp. Sci. Ser., 35 (2008), 1-6.
|
[15] |
I. Bârsan, P. Braica and M. Fǎrcaş,
About approximation of B-continuous functions of several variables by generalized boolean sum operators of Bernstein type on a simplex, Creat. Math. Inform., 20 (2011), 20-23.
doi: 10.37193/CMI.2011.01.03. |
[16] |
B. Baxhaku and P. N. Agrawal,
Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Appl. Math. Comput., 306 (2017), 56-72.
doi: 10.1016/j.amc.2017.02.007. |
[17] |
B. Baxhaku, P. N. Agrawal and R. Shukla, Bivariate positive linear operators constructed by means of $q$-Lagrange polynomials, J. Math. Anal. Appl., 491 (2020), 124337, 24 pp.
doi: 10.1016/j.jmaa.2020.124337. |
[18] |
Q. B. Cai, B.-Y. Lian and G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), Paper No. 61, 11 pp.
doi: 10.1186/s13660-018-1653-7. |
[19] |
Q. B. Cai and G. Zhou, Blending type approximation by GBS operators of bivariate tensor product of $\lambda$-Bernstein-Kantorovich type, J. Inequal. Appl., 2018 (2018), Paper No. 268, 11 pp.
doi: 10.1186/s13660-018-1862-0. |
[20] |
Q. B. Cai and G. Zhou,
On $(p, q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators, Appl. Math. Comput., 276 (2016), 12-20.
doi: 10.1016/j.amc.2015.12.006. |
[21] |
D. Cárdenas-Morales and V. Gupta,
Two families of Bernstein-Durrmeyer type operators, Appl. Math. Comput., 248 (2014), 342-353.
doi: 10.1016/j.amc.2014.09.094. |
[22] |
C. Cottin,
Mixed K-functionals: A measure of smoothness for blending-type approximation, Math. Z., 204 (1990), 69-83.
doi: 10.1007/BF02570860. |
[23] |
E. Dobrescu and I. Matei,
The approximation by Bernstein type polynomials of bidimensional continuous functions, An. Univ. Timişoara Ser. Şti. Mat.-Fiz., 4 (1966), 85-90.
|
[24] |
O. Doğru and K. Kanat,
On statistical approximation properties of the Kantorovich type Lupaş operators, Math. Comput. Modelling, 55 (2012), 1610-1621.
doi: 10.1016/j.mcm.2011.10.059. |
[25] |
M. D. Farcas,
About approximation of B-continuous and B-differentiable functions of three variables by GBS operators of Bernstein type, Creat. Math. Inform., 17 (2008), 20-27.
|
[26] |
A. D. Gadjiev and A. M. Ghorbanalizadeh,
Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890-901.
doi: 10.1016/j.amc.2010.01.099. |
[27] |
N. K. Govil, V. Gupta and D. Soybaş,
Certain new class of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195-203.
doi: 10.1016/j.amc.2013.09.030. |
[28] |
V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Berlin, 2014.
doi: 10.1007/978-3-319-02765-4. |
[29] |
V. Gupta, T. M. Rassias, P. N. Agrawal and A. M. Acu, Recent Advances in Constructive Approximation Theory, Series: Springer Optimization and its Applications, Springer, Cham, 2018.
doi: 10.1007/978-3-319-92165-5. |
[30] |
M. Örkcü and O. Doğru,
Weighted statistical approximation by Kantorovich type $q$-Szász-Mirakjan operators, Appl. Math. Comput., 217 (2011), 7913-7919.
doi: 10.1016/j.amc.2011.03.009. |
[31] |
S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of $\lambda$-Bernstein-Kantorovich operators with shifted knots, Math. Methods Appl. Sci., (2019), 4042–4053.
doi: 10.1002/mma.5632. |
[32] |
V. I. Volkov,
On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk. SSSR (N.S), 115 (1957), 17-19.
|
show all references
References:
[1] |
A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., 202 (2018), Paper No. 202, 12 pp.
doi: 10.1186/s13660-018-1795-7. |
[2] |
P. N. Agrawal, B. Baxhaku and R. Shukla,
On q-analogue of a parametric generalization of Baskakov operators, Math. Methods Appl. Sci., 44 (2021), 5989-6004.
doi: 10.1002/mma.7163. |
[3] |
R. P. Agarwal and V. Gupta, On $q$-analogue of a complex summation-integral type operators in compact disk, J. Inequal. Appl., 2012 (2012), Article number: 111.
doi: 10.1186/1029-242X-2012-111. |
[4] |
P. N. Agrawal and N. Ispir,
Degree of approximation for bivariate Chlodowsky-Szász-Charlier type operators, Results Math., 69 (2016), 365-385.
doi: 10.1007/s00025-015-0495-6. |
[5] |
P. N. Agrawal, N. Ispir and A. Kajla,
GBS operators of Lupaş-Durrmeyer type based on Pólya distribution, Results Math., 69 (2016), 397-418.
doi: 10.1007/s00025-015-0507-6. |
[6] |
G. A. Anastassiou and S. G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Birkhäuser Boston, Inc., Boston, MA, 2000.
doi: 10.1007/978-1-4612-1360-4. |
[7] |
A. Aral and V. Gupta,
On the Durrmeyer type modification of the $q$-Baskakov type operators, Nonlinear Anal., 72 (2010), 1171-1180.
doi: 10.1016/j.na.2009.07.052. |
[8] |
C. Badea, I. Badea, C. Cottin and H. H. Gonska,
Notes on degree of approximation of B-continuous and B-differentiable functions, Approx. Theory Appl., 4 (1988), 95-108.
|
[9] |
C. Badea, I. Badea and H. H. Gonska,
A test function theorem and approximation by pseudopolynomials, Bull. Aust. Math. Soc., 34 (1986), 53-64.
doi: 10.1017/S0004972700004494. |
[10] |
C. Badea and C. Cottin,
Korovkin-type theorem for generalized boolean sum operators, In Colloq. Math. Soc. Jńos Bolyai, North-Holland, Amsterdam, 58 (1991), 51-67.
|
[11] |
D. Bărbosu,
Kantorovich-Schurer bivariate operators, Miskolc Math. Notes, 5 (2004), 129-136.
doi: 10.18514/MMN.2004.71. |
[12] |
D. Bărbosu, A.-M. Acu and C. V. Muraru,
On certain GBS-Durrmeyer operators based on $q$-integers, Turk. J. Math., 41 (2017), 368-380.
doi: 10.3906/mat-1601-34. |
[13] |
D. Bărbosu and C. V. Muraru,
Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on $q$-integers, Appl. Math. Comput., 259 (2015), 80-87.
doi: 10.1016/j.amc.2015.02.030. |
[14] |
D. Bărbosu and O. T. Pop,
A note on the GBS Bernstein's approximation formula, Annals Univ. of Craiova, Math. Comp. Sci. Ser., 35 (2008), 1-6.
|
[15] |
I. Bârsan, P. Braica and M. Fǎrcaş,
About approximation of B-continuous functions of several variables by generalized boolean sum operators of Bernstein type on a simplex, Creat. Math. Inform., 20 (2011), 20-23.
doi: 10.37193/CMI.2011.01.03. |
[16] |
B. Baxhaku and P. N. Agrawal,
Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Appl. Math. Comput., 306 (2017), 56-72.
doi: 10.1016/j.amc.2017.02.007. |
[17] |
B. Baxhaku, P. N. Agrawal and R. Shukla, Bivariate positive linear operators constructed by means of $q$-Lagrange polynomials, J. Math. Anal. Appl., 491 (2020), 124337, 24 pp.
doi: 10.1016/j.jmaa.2020.124337. |
[18] |
Q. B. Cai, B.-Y. Lian and G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), Paper No. 61, 11 pp.
doi: 10.1186/s13660-018-1653-7. |
[19] |
Q. B. Cai and G. Zhou, Blending type approximation by GBS operators of bivariate tensor product of $\lambda$-Bernstein-Kantorovich type, J. Inequal. Appl., 2018 (2018), Paper No. 268, 11 pp.
doi: 10.1186/s13660-018-1862-0. |
[20] |
Q. B. Cai and G. Zhou,
On $(p, q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators, Appl. Math. Comput., 276 (2016), 12-20.
doi: 10.1016/j.amc.2015.12.006. |
[21] |
D. Cárdenas-Morales and V. Gupta,
Two families of Bernstein-Durrmeyer type operators, Appl. Math. Comput., 248 (2014), 342-353.
doi: 10.1016/j.amc.2014.09.094. |
[22] |
C. Cottin,
Mixed K-functionals: A measure of smoothness for blending-type approximation, Math. Z., 204 (1990), 69-83.
doi: 10.1007/BF02570860. |
[23] |
E. Dobrescu and I. Matei,
The approximation by Bernstein type polynomials of bidimensional continuous functions, An. Univ. Timişoara Ser. Şti. Mat.-Fiz., 4 (1966), 85-90.
|
[24] |
O. Doğru and K. Kanat,
On statistical approximation properties of the Kantorovich type Lupaş operators, Math. Comput. Modelling, 55 (2012), 1610-1621.
doi: 10.1016/j.mcm.2011.10.059. |
[25] |
M. D. Farcas,
About approximation of B-continuous and B-differentiable functions of three variables by GBS operators of Bernstein type, Creat. Math. Inform., 17 (2008), 20-27.
|
[26] |
A. D. Gadjiev and A. M. Ghorbanalizadeh,
Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890-901.
doi: 10.1016/j.amc.2010.01.099. |
[27] |
N. K. Govil, V. Gupta and D. Soybaş,
Certain new class of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195-203.
doi: 10.1016/j.amc.2013.09.030. |
[28] |
V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Berlin, 2014.
doi: 10.1007/978-3-319-02765-4. |
[29] |
V. Gupta, T. M. Rassias, P. N. Agrawal and A. M. Acu, Recent Advances in Constructive Approximation Theory, Series: Springer Optimization and its Applications, Springer, Cham, 2018.
doi: 10.1007/978-3-319-92165-5. |
[30] |
M. Örkcü and O. Doğru,
Weighted statistical approximation by Kantorovich type $q$-Szász-Mirakjan operators, Appl. Math. Comput., 217 (2011), 7913-7919.
doi: 10.1016/j.amc.2011.03.009. |
[31] |
S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of $\lambda$-Bernstein-Kantorovich operators with shifted knots, Math. Methods Appl. Sci., (2019), 4042–4053.
doi: 10.1002/mma.5632. |
[32] |
V. I. Volkov,
On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk. SSSR (N.S), 115 (1957), 17-19.
|


(x, y) | |||
(0, 0.1) | 0.0014 | 0.000046 | 0.0000017 |
(0, 0.2) | 0.0023 | 0.000113 | 0.0000469 |
(0, 0.4) | 0.0042 | 0.000328 | 0.0001480 |
(0, 0.6) | 0.0065 | 0.000649 | 0.0003044 |
(0.3, 0.2) | 0.0104 | 0.002238 | 0.0014384 |
(0.4, 0.6) | 0.0574 | 0.005843 | 0.0040092 |
(0.7, 0.85) | 0.0044 | 0.015745 | 0.0010459 |
(0.9, 0.9) | 0.0041 | 0.049901 | 0.0343900 |
(x, y) | |||
(0, 0.1) | 0.0014 | 0.000046 | 0.0000017 |
(0, 0.2) | 0.0023 | 0.000113 | 0.0000469 |
(0, 0.4) | 0.0042 | 0.000328 | 0.0001480 |
(0, 0.6) | 0.0065 | 0.000649 | 0.0003044 |
(0.3, 0.2) | 0.0104 | 0.002238 | 0.0014384 |
(0.4, 0.6) | 0.0574 | 0.005843 | 0.0040092 |
(0.7, 0.85) | 0.0044 | 0.015745 | 0.0010459 |
(0.9, 0.9) | 0.0041 | 0.049901 | 0.0343900 |
(x, y) | |||
(0, 0.1) | 0.000347569 | 0.0000078 | 0.00000246 |
(0, 0.2) | 0.000201932 | 0.0000009 | 0.00000039 |
(0, 0.4) | 0.000862538 | 0.0000596 | 0.00002016 |
(0, 0.6) | 0.002918733 | 0.0001733 | 0.00005868 |
(0.3, 0.2) | 0.002621451 | 0.0003985 | 0.00012684 |
(0.4, 0.6) | 0.012447883 | 0.0012800 | 0.00000967 |
(0.7, 0.85) | 0.020700332 | 0.0083391 | 0.00698802 |
(0.9, 0.9) | 0.081198311 | 0.0232949 | 0.01644060 |
(x, y) | |||
(0, 0.1) | 0.000347569 | 0.0000078 | 0.00000246 |
(0, 0.2) | 0.000201932 | 0.0000009 | 0.00000039 |
(0, 0.4) | 0.000862538 | 0.0000596 | 0.00002016 |
(0, 0.6) | 0.002918733 | 0.0001733 | 0.00005868 |
(0.3, 0.2) | 0.002621451 | 0.0003985 | 0.00012684 |
(0.4, 0.6) | 0.012447883 | 0.0012800 | 0.00000967 |
(0.7, 0.85) | 0.020700332 | 0.0083391 | 0.00698802 |
(0.9, 0.9) | 0.081198311 | 0.0232949 | 0.01644060 |
[1] |
Uğur Kadak, Faruk Özger. A numerical comparative study of generalized Bernstein-Kantorovich operators. Mathematical Foundations of Computing, 2021, 4 (4) : 311-332. doi: 10.3934/mfc.2021021 |
[2] |
Parveen Bawa, Neha Bhardwaj, P. N. Agrawal. Quantitative Voronovskaya type theorems and GBS operators of Kantorovich variant of Lupaş-Stancu operators based on Pólya distribution. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022003 |
[3] |
Ana-Maria Acu, Laura Hodis, Ioan Rasa. Multivariate weighted kantorovich operators. Mathematical Foundations of Computing, 2020, 3 (2) : 117-124. doi: 10.3934/mfc.2020009 |
[4] |
Ling-Xiong Han, Wen-Hui Li, Feng Qi. Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28 (2) : 721-738. doi: 10.3934/era.2020037 |
[5] |
Ana-Maria Acu, Ioan Cristian Buscu, Ioan Rasa. Generalized Kantorovich modifications of positive linear operators. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2021042 |
[6] |
Nursel Çetin. On complex modified Bernstein-Stancu operators. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2021043 |
[7] |
Fengfeng Wang, Dansheng Yu, Bin Zhang. On approximation of Bernstein-Durrmeyer operators in movable interval. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022008 |
[8] |
Lucian Coroianu, Sorin G. Gal. New approximation properties of the Bernstein max-min operators and Bernstein max-product operators. Mathematical Foundations of Computing, 2022, 5 (3) : 259-268. doi: 10.3934/mfc.2021034 |
[9] |
Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022002 |
[10] |
Purshottam Narain Agrawal, Şule Yüksel Güngör, Abhishek Kumar. Better degree of approximation by modified Bernstein-Durrmeyer type operators. Mathematical Foundations of Computing, 2022, 5 (2) : 75-92. doi: 10.3934/mfc.2021024 |
[11] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[12] |
Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753 |
[13] |
Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189 |
[14] |
Harun Karsli. On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 2021, 4 (1) : 15-30. doi: 10.3934/mfc.2020023 |
[15] |
Pablo Álvarez-Caudevilla, V. A. Galaktionov. Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators. Communications on Pure and Applied Analysis, 2016, 15 (1) : 261-286. doi: 10.3934/cpaa.2016.15.261 |
[16] |
Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space. Communications on Pure and Applied Analysis, 2002, 1 (2) : 237-252. doi: 10.3934/cpaa.2002.1.237 |
[17] |
Purshottam N. Agrawal, Thakur Ashok K. Sinha, Avinash Sharma. Convergence of derivative of Szász type operators involving Charlier polynomials. Mathematical Foundations of Computing, 2022, 5 (1) : 1-15. doi: 10.3934/mfc.2021016 |
[18] |
Antonio G. García. Sampling in $ \Lambda $-shift-invariant subspaces of Hilbert-Schmidt operators on $ L^2(\mathbb{R}^d) $. Mathematical Foundations of Computing, 2021, 4 (4) : 281-297. doi: 10.3934/mfc.2021019 |
[19] |
Mohd Qasim, Mohd Shanawaz Mansoori, Asif Khan, Zaheer Abbas, Mohammad Mursaleen. Convergence of modified Szász-Mirakyan-Durrmeyer operators depending on certain parameters. Mathematical Foundations of Computing, 2022, 5 (3) : 187-196. doi: 10.3934/mfc.2021027 |
[20] |
Xingwang Xu, Paul C. Yang. Positivity of Paneitz operators. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 329-342. doi: 10.3934/dcds.2001.7.329 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]