[1]
|
A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., 202 (2018), Paper No. 202, 12 pp.
doi: 10.1186/s13660-018-1795-7.
|
[2]
|
P. N. Agrawal, B. Baxhaku and R. Shukla, On q-analogue of a parametric generalization of Baskakov operators, Math. Methods Appl. Sci., 44 (2021), 5989-6004.
doi: 10.1002/mma.7163.
|
[3]
|
R. P. Agarwal and V. Gupta, On $q$-analogue of a complex summation-integral type operators in compact disk, J. Inequal. Appl., 2012 (2012), Article number: 111.
doi: 10.1186/1029-242X-2012-111.
|
[4]
|
P. N. Agrawal and N. Ispir, Degree of approximation for bivariate Chlodowsky-Szász-Charlier type operators, Results Math., 69 (2016), 365-385.
doi: 10.1007/s00025-015-0495-6.
|
[5]
|
P. N. Agrawal, N. Ispir and A. Kajla, GBS operators of Lupaş-Durrmeyer type based on Pólya distribution, Results Math., 69 (2016), 397-418.
doi: 10.1007/s00025-015-0507-6.
|
[6]
|
G. A. Anastassiou and S. G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Birkhäuser Boston, Inc., Boston, MA, 2000.
doi: 10.1007/978-1-4612-1360-4.
|
[7]
|
A. Aral and V. Gupta, On the Durrmeyer type modification of the $q$-Baskakov type operators, Nonlinear Anal., 72 (2010), 1171-1180.
doi: 10.1016/j.na.2009.07.052.
|
[8]
|
C. Badea, I. Badea, C. Cottin and H. H. Gonska, Notes on degree of approximation of B-continuous and B-differentiable functions, Approx. Theory Appl., 4 (1988), 95-108.
|
[9]
|
C. Badea, I. Badea and H. H. Gonska, A test function theorem and approximation by pseudopolynomials, Bull. Aust. Math. Soc., 34 (1986), 53-64.
doi: 10.1017/S0004972700004494.
|
[10]
|
C. Badea and C. Cottin, Korovkin-type theorem for generalized boolean sum operators, In Colloq. Math. Soc. Jńos Bolyai, North-Holland, Amsterdam, 58 (1991), 51-67.
|
[11]
|
D. Bărbosu, Kantorovich-Schurer bivariate operators, Miskolc Math. Notes, 5 (2004), 129-136.
doi: 10.18514/MMN.2004.71.
|
[12]
|
D. Bărbosu, A.-M. Acu and C. V. Muraru, On certain GBS-Durrmeyer operators based on $q$-integers, Turk. J. Math., 41 (2017), 368-380.
doi: 10.3906/mat-1601-34.
|
[13]
|
D. Bărbosu and C. V. Muraru, Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on $q$-integers, Appl. Math. Comput., 259 (2015), 80-87.
doi: 10.1016/j.amc.2015.02.030.
|
[14]
|
D. Bărbosu and O. T. Pop, A note on the GBS Bernstein's approximation formula, Annals Univ. of Craiova, Math. Comp. Sci. Ser., 35 (2008), 1-6.
|
[15]
|
I. Bârsan, P. Braica and M. Fǎrcaş, About approximation of B-continuous functions of several variables by generalized boolean sum operators of Bernstein type on a simplex, Creat. Math. Inform., 20 (2011), 20-23.
doi: 10.37193/CMI.2011.01.03.
|
[16]
|
B. Baxhaku and P. N. Agrawal, Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Appl. Math. Comput., 306 (2017), 56-72.
doi: 10.1016/j.amc.2017.02.007.
|
[17]
|
B. Baxhaku, P. N. Agrawal and R. Shukla, Bivariate positive linear operators constructed by means of $q$-Lagrange polynomials, J. Math. Anal. Appl., 491 (2020), 124337, 24 pp.
doi: 10.1016/j.jmaa.2020.124337.
|
[18]
|
Q. B. Cai, B.-Y. Lian and G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), Paper No. 61, 11 pp.
doi: 10.1186/s13660-018-1653-7.
|
[19]
|
Q. B. Cai and G. Zhou, Blending type approximation by GBS operators of bivariate tensor product of $\lambda$-Bernstein-Kantorovich type, J. Inequal. Appl., 2018 (2018), Paper No. 268, 11 pp.
doi: 10.1186/s13660-018-1862-0.
|
[20]
|
Q. B. Cai and G. Zhou, On $(p, q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators, Appl. Math. Comput., 276 (2016), 12-20.
doi: 10.1016/j.amc.2015.12.006.
|
[21]
|
D. Cárdenas-Morales and V. Gupta, Two families of Bernstein-Durrmeyer type operators, Appl. Math. Comput., 248 (2014), 342-353.
doi: 10.1016/j.amc.2014.09.094.
|
[22]
|
C. Cottin, Mixed K-functionals: A measure of smoothness for blending-type approximation, Math. Z., 204 (1990), 69-83.
doi: 10.1007/BF02570860.
|
[23]
|
E. Dobrescu and I. Matei, The approximation by Bernstein type polynomials of bidimensional continuous functions, An. Univ. Timişoara Ser. Şti. Mat.-Fiz., 4 (1966), 85-90.
|
[24]
|
O. Doğru and K. Kanat, On statistical approximation properties of the Kantorovich type Lupaş operators, Math. Comput. Modelling, 55 (2012), 1610-1621.
doi: 10.1016/j.mcm.2011.10.059.
|
[25]
|
M. D. Farcas, About approximation of B-continuous and B-differentiable functions of three variables by GBS operators of Bernstein type, Creat. Math. Inform., 17 (2008), 20-27.
|
[26]
|
A. D. Gadjiev and A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890-901.
doi: 10.1016/j.amc.2010.01.099.
|
[27]
|
N. K. Govil, V. Gupta and D. Soybaş, Certain new class of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195-203.
doi: 10.1016/j.amc.2013.09.030.
|
[28]
|
V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Berlin, 2014.
doi: 10.1007/978-3-319-02765-4.
|
[29]
|
V. Gupta, T. M. Rassias, P. N. Agrawal and A. M. Acu, Recent Advances in Constructive Approximation Theory, Series: Springer Optimization and its Applications, Springer, Cham, 2018.
doi: 10.1007/978-3-319-92165-5.
|
[30]
|
M. Örkcü and O. Doğru, Weighted statistical approximation by Kantorovich type $q$-Szász-Mirakjan operators, Appl. Math. Comput., 217 (2011), 7913-7919.
doi: 10.1016/j.amc.2011.03.009.
|
[31]
|
S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of $\lambda$-Bernstein-Kantorovich operators with shifted knots, Math. Methods Appl. Sci., (2019), 4042–4053.
doi: 10.1002/mma.5632.
|
[32]
|
V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk. SSSR (N.S), 115 (1957), 17-19.
|