-
Previous Article
Convergence of modified Szász-Mirakyan-Durrmeyer operators depending on certain parameters
- MFC Home
- This Issue
-
Next Article
A new kind of Bi-variate $ \lambda $ -Bernstein-Kantorovich type operator with shifted knots and its associated GBS form
On bivariate Jain operators
Ankara University, Faculty of Science, Department of Mathematics, Str. Dögol, 06100, Beşevler, Ankara, Turkey |
In this paper we deal with bivariate extension of Jain operators. Using elementary method, we show that these opearators are non-increasing in $ n $ when the attached function is convex. Moreover, we demonstrate that these operators preserve the properties of modulus of continuity. Finally, we present a Voronovskaja type theorem for the sequence of bivariate Jain operators.
References:
[1] |
U. Abel and O. Agratini,
Asymptotic behaviour of Jain operators, Numer Algor., 71 (2016), 553-565.
doi: 10.1007/s11075-015-0009-3. |
[2] |
O. Agratini,
Approximation properties of a class of linear operators, Math. Meth. Appl. Sci., 36 (2013), 2353-2358.
doi: 10.1002/mma.2758. |
[3] |
O. Agratini, A stop over Jain operators and their generalizations, An. Univ. Vest Timiş. Ser. Mat.-Inform., 56 (2018), 28-42.
doi: 10.2478/awutm-2018-0014. |
[4] |
C. Bardaro and I. Mantellini,
On Pointwise approximation properties of multivariate Semi-discrete sampling type operators, Results Math., 72 (2017), 1449-1472.
doi: 10.1007/s00025-017-0667-7. |
[5] |
F. Cao, C. Ding and Z. Xu, On multivariate Baskakov operator, J. Math. Anal. Appl., 307 (2005), 274-291.
doi: 10.1016/j.jmaa.2004.10.061. |
[6] |
N. Çetin and G. Başcanbaz-Tunca,
Approximation by Jain-Schurer operators, Facta Univ. Ser. Math. Inform., 35 (2020), 1343-1356.
doi: 10.22190/fumi2005343c. |
[7] |
E. W. Cheney and A. Sharma,
Bernstein power series, Can. J. Math., 16 (1964), 241-252.
doi: 10.4153/CJM-1964-023-1. |
[8] |
E. Deniz,
Quantitative estimates for Jain-Kantorovich operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65 (2016), 121-132.
doi: 10.1501/Commua1_0000000764. |
[9] |
M. Dhamija and N. Deo,
Jain–Durrmeyer operators associated with the inverse Pólya–Eggenberger distribution, Appl. Math. Comput., 286 (2016), 15-22.
doi: 10.1016/j.amc.2016.03.015. |
[10] |
O. Doğru, R. N. Mohapatra and M. Örkcü,
Approximation properties of genaralized Jain operators, Filomat, 30 (2016), 2359-2366.
doi: 10.2298/FIL1609359D. |
[11] |
A. Farcaş, An asymptotic formula for Jain's operators, Stud. Univ. Babeş-Bolyai Math., 57 (2012), 511–517. |
[12] |
A. Farcaş,
An approximation property of the generalized Jain's operators of two variables, Math. Sci. Appl. E-Notes, 1 (2013), 158-164.
|
[13] |
V. Gupta, R. P. Agarwal and D. K. Verma,
Approximation for a new sequence of summation-integral type operators, Adv. Math. Sci. Appl., 23 (2013), 35-42.
|
[14] |
V. Gupta and G. C. Greubel,
Moment estimations of new Szász–Mirakyan–Durrmeyer operators, Appl. Math. Comput., 271 (2015), 540-547.
doi: 10.1016/j.amc.2015.09.037. |
[15] |
G. C. Jain,
Approximation of functions by a new class of linear operators, J. Austral. Math. Soc., 13 (1972), 271-276.
doi: 10.1017/S1446788700013689. |
[16] |
Z. Li,
Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102 (2000), 171-174.
doi: 10.1006/jath.1999.3374. |
[17] |
G. M. Mirakjan,
Approximation of continuous functions with the aid of polynomials, Dokl. Akad. Nauk SSSR, 31 (1941), 201-205.
|
[18] |
A. Olgun,
Some properties of the multivariate Szász operators, C. R. Acad. Bulg. Sci., 65 (2012), 139-146.
|
[19] |
A. Olgun, F. Taşdelen and A. Erençin,
A generalization of Jain's operators, Appl. Math. Comput., 266 (2015), 6-11.
doi: 10.1016/j.amc.2015.05.060. |
[20] |
M. A. Özarslan,
Approximation properties of Jain-Stancu operators, Filomat, 30 (2016), 1081-1088.
doi: 10.2298/FIL1604081O. |
[21] |
L. Rempulska and M. Skorupka,
On Szasz-Mirakyan operators of functions of two variables, Le Matematiche, 53 (1998), 51-60.
|
[22] |
D. D. Stancu and E. I. Stoica, On the use Abel-Jensen type combinatorial formulas for construction and investigation of some algebraic polynomial operators of approximation, Stud. Univ. Babeş -Bolyai Math., 54 (2009), 167–182. |
[23] |
O. Szász,
Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Natl. Bur. Stand., 45 (1950), 239-245.
doi: 10.6028/jres.045.024. |
[24] |
S. Tarabie,
On Jain-Beta linear operators, Appl. Math. Inf. Sci., 6 (2012), 213-216.
|
[25] |
S. Umar and Q. Razi,
Approximation of function by a generalized Szász operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 34 (1985), 45-52.
doi: 10.1501/Commua1_0000000240. |
show all references
References:
[1] |
U. Abel and O. Agratini,
Asymptotic behaviour of Jain operators, Numer Algor., 71 (2016), 553-565.
doi: 10.1007/s11075-015-0009-3. |
[2] |
O. Agratini,
Approximation properties of a class of linear operators, Math. Meth. Appl. Sci., 36 (2013), 2353-2358.
doi: 10.1002/mma.2758. |
[3] |
O. Agratini, A stop over Jain operators and their generalizations, An. Univ. Vest Timiş. Ser. Mat.-Inform., 56 (2018), 28-42.
doi: 10.2478/awutm-2018-0014. |
[4] |
C. Bardaro and I. Mantellini,
On Pointwise approximation properties of multivariate Semi-discrete sampling type operators, Results Math., 72 (2017), 1449-1472.
doi: 10.1007/s00025-017-0667-7. |
[5] |
F. Cao, C. Ding and Z. Xu, On multivariate Baskakov operator, J. Math. Anal. Appl., 307 (2005), 274-291.
doi: 10.1016/j.jmaa.2004.10.061. |
[6] |
N. Çetin and G. Başcanbaz-Tunca,
Approximation by Jain-Schurer operators, Facta Univ. Ser. Math. Inform., 35 (2020), 1343-1356.
doi: 10.22190/fumi2005343c. |
[7] |
E. W. Cheney and A. Sharma,
Bernstein power series, Can. J. Math., 16 (1964), 241-252.
doi: 10.4153/CJM-1964-023-1. |
[8] |
E. Deniz,
Quantitative estimates for Jain-Kantorovich operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65 (2016), 121-132.
doi: 10.1501/Commua1_0000000764. |
[9] |
M. Dhamija and N. Deo,
Jain–Durrmeyer operators associated with the inverse Pólya–Eggenberger distribution, Appl. Math. Comput., 286 (2016), 15-22.
doi: 10.1016/j.amc.2016.03.015. |
[10] |
O. Doğru, R. N. Mohapatra and M. Örkcü,
Approximation properties of genaralized Jain operators, Filomat, 30 (2016), 2359-2366.
doi: 10.2298/FIL1609359D. |
[11] |
A. Farcaş, An asymptotic formula for Jain's operators, Stud. Univ. Babeş-Bolyai Math., 57 (2012), 511–517. |
[12] |
A. Farcaş,
An approximation property of the generalized Jain's operators of two variables, Math. Sci. Appl. E-Notes, 1 (2013), 158-164.
|
[13] |
V. Gupta, R. P. Agarwal and D. K. Verma,
Approximation for a new sequence of summation-integral type operators, Adv. Math. Sci. Appl., 23 (2013), 35-42.
|
[14] |
V. Gupta and G. C. Greubel,
Moment estimations of new Szász–Mirakyan–Durrmeyer operators, Appl. Math. Comput., 271 (2015), 540-547.
doi: 10.1016/j.amc.2015.09.037. |
[15] |
G. C. Jain,
Approximation of functions by a new class of linear operators, J. Austral. Math. Soc., 13 (1972), 271-276.
doi: 10.1017/S1446788700013689. |
[16] |
Z. Li,
Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102 (2000), 171-174.
doi: 10.1006/jath.1999.3374. |
[17] |
G. M. Mirakjan,
Approximation of continuous functions with the aid of polynomials, Dokl. Akad. Nauk SSSR, 31 (1941), 201-205.
|
[18] |
A. Olgun,
Some properties of the multivariate Szász operators, C. R. Acad. Bulg. Sci., 65 (2012), 139-146.
|
[19] |
A. Olgun, F. Taşdelen and A. Erençin,
A generalization of Jain's operators, Appl. Math. Comput., 266 (2015), 6-11.
doi: 10.1016/j.amc.2015.05.060. |
[20] |
M. A. Özarslan,
Approximation properties of Jain-Stancu operators, Filomat, 30 (2016), 1081-1088.
doi: 10.2298/FIL1604081O. |
[21] |
L. Rempulska and M. Skorupka,
On Szasz-Mirakyan operators of functions of two variables, Le Matematiche, 53 (1998), 51-60.
|
[22] |
D. D. Stancu and E. I. Stoica, On the use Abel-Jensen type combinatorial formulas for construction and investigation of some algebraic polynomial operators of approximation, Stud. Univ. Babeş -Bolyai Math., 54 (2009), 167–182. |
[23] |
O. Szász,
Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Natl. Bur. Stand., 45 (1950), 239-245.
doi: 10.6028/jres.045.024. |
[24] |
S. Tarabie,
On Jain-Beta linear operators, Appl. Math. Inf. Sci., 6 (2012), 213-216.
|
[25] |
S. Umar and Q. Razi,
Approximation of function by a generalized Szász operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 34 (1985), 45-52.
doi: 10.1501/Commua1_0000000240. |
[1] |
Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135 |
[2] |
Danilo Costarelli, Gianluca Vinti. Asymptotic expansions and Voronovskaja type theorems for the multivariate neural network operators. Mathematical Foundations of Computing, 2020, 3 (1) : 41-50. doi: 10.3934/mfc.2020004 |
[3] |
Nathan Albin, Nethali Fernando, Pietro Poggi-Corradini. Modulus metrics on networks. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 1-17. doi: 10.3934/dcdsb.2018161 |
[4] |
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 |
[5] |
Abdon E. Choque-Rivero, Iván Area. A Favard type theorem for Hurwitz polynomials. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 529-544. doi: 10.3934/dcdsb.2019252 |
[6] |
Gary Froyland, Simon Lloyd, Anthony Quas. A semi-invertible Oseledets Theorem with applications to transfer operator cocycles. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3835-3860. doi: 10.3934/dcds.2013.33.3835 |
[7] |
Albert Fathi. An Urysohn-type theorem under a dynamical constraint. Journal of Modern Dynamics, 2016, 10: 331-338. doi: 10.3934/jmd.2016.10.331 |
[8] |
Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475 |
[9] |
Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 |
[10] |
Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035 |
[11] |
Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887 |
[12] |
Frank Neubrander, Koray Özer, Lee Windsperger. On subdiagonal rational Padé approximations and the Brenner-Thomée approximation theorem for operator semigroups. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3565-3579. doi: 10.3934/dcdss.2020238 |
[13] |
Nakao Hayashi, Pavel I. Naumkin. Modified wave operator for Schrodinger type equations with subcritical dissipative nonlinearities. Inverse Problems and Imaging, 2007, 1 (2) : 391-398. doi: 10.3934/ipi.2007.1.391 |
[14] |
Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure and Applied Analysis, 2022, 21 (2) : 541-553. doi: 10.3934/cpaa.2021187 |
[15] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1629-1645. doi: 10.3934/dcdsb.2021104 |
[16] |
Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947 |
[17] |
Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113 |
[18] |
Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990 |
[19] |
Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure and Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511 |
[20] |
Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]