In this paper we study boundedness properties of certain semi-discrete sampling series in Mellin–Lebesgue spaces. Also we examine some examples which illustrate the theory developed. These results pave the way to the norm-convergence of these operators.
Citation: |
[1] |
L. Angeloni, D. Costarelli and G. Vinti, A characterization of the convergence in variation for the generalized sampling series, Ann. Acad. Sci. Fenn. Math., 43 (2018), 755-767.
doi: 10.5186/aasfm.2018.4343.![]() ![]() ![]() |
[2] |
L. Angeloni, D. Costarelli and G. Vinti, Convergence in variation for the multidimensional generalized sampling series and applications to smoothing for digital image processing, Ann. Acad. Sci. Fenn. Math., 45 (2020), 751-770.
doi: 10.5186/aasfm.2020.4532.![]() ![]() ![]() |
[3] |
F. Asdrubali, G. Baldinelli, F. Bianchi, D. Costarelli, A. Rotili, M. Seracini and G. Vinti, Detection of thermal bridges from thermographic images by means of image processing approximation algorithms, Appl. Math. Comput., 317 (2018), 160-171.
doi: 10.1016/j.amc.2017.08.058.![]() ![]() ![]() |
[4] |
S. Balsamo and I. Mantellini, On linear combinations of general exponential sampling series, Results Math., 74 (2019), Paper No. 180, 19 pp.
doi: 10.1007/s00025-019-1104-x.![]() ![]() ![]() |
[5] |
C. Bardaro, P. L. Butzer and I. Mantellini, The exponential sampling theorem of signal analysis and the reproduction kernel formula in the Mellin transform setting, Sampl. Theory Signal Image Process., 13 (2014), 35-66.
doi: 10.1007/BF03549572.![]() ![]() ![]() |
[6] |
C. Bardaro, P. L. Butzer and I. Mantellini, The Mellin-Parseval formula and its interconnections with the exponential sampling theorem of optical physics, Integral Transforms and Special Functions, 27 (2016), 17-29.
doi: 10.1080/10652469.2015.1087401.![]() ![]() ![]() |
[7] |
C. Bardaro, P. L. Butzer, R. L. Stens and G. Vinti, Prediction by samples from the past with error estimates covering discontinuous signals, IEEE Trans. Information Theory, 56 (2010), 614-633.
doi: 10.1109/TIT.2009.2034793.![]() ![]() ![]() |
[8] |
C. Bardaro, L Faina and I. Mantellini, A generalization of the exponential sampling series and its approximation properties, Math. Slovaca., 67 (2017), 1481-1496.
doi: 10.1515/ms-2017-0064.![]() ![]() ![]() |
[9] |
C. Bardaro, L. Faina and I. Mantellini, Quantitative Voronovskaja formulae for generalized Durrmeyer sampling type series, Math. Nachr., 289 (2016), 1702-1720.
doi: 10.1002/mana.201500225.![]() ![]() ![]() |
[10] |
C. Bardaro and I. Mantellini, A quantitative Voronovskaja formula for generalized sampling operators, East J. Approx., 15 (2009), 459-471.
![]() ![]() |
[11] |
C. Bardaro and I. Mantellini, Asymptotic formulae for linear combinations of generalized sampling type operators, Z. Anal. Anwend., 32 (2013), 279-298.
doi: 10.4171/ZAA/1485.![]() ![]() ![]() |
[12] |
C. Bardaro and I. Mantellini, Asymptotic expansion of generalized Durrmeyer sampling type series, Jaen Journal on Approximation, 6 (2014), 143-165.
![]() ![]() |
[13] |
C. Bardaro and I. Mantellini, On a Durrmeyer type modifcation of the Exponential sampling series, Rend. Circ. Mat. Palermo (2), 70 (2021), 1289-1304.
doi: 10.1007/s12215-020-00559-6.![]() ![]() ![]() |
[14] |
C. Bardaro, I. Mantellini and G. Schmeisser, Exponential sampling series: Convergence in Mellin-Lebesgue spaces, Results Math., 74 (2019), Paper No. 119, 20 pp.
doi: 10.1007/s00025-019-1044-5.![]() ![]() ![]() |
[15] |
C. Bardaro, G. Vinti, P. L. Butzer and R. L. Stens, Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampling Theory Signal Image Processing, 6 (2007), 29-52.
doi: 10.1007/BF03549462.![]() ![]() ![]() |
[16] |
M. Bertero and E. R. Pike, Exponential sampling method for Laplace and other dilationally invariant transforms: I. Singular-system analysis, II. Examples in photon correction spectroscopy and Frauenhofer diffraction, Inverse Problems, 7 (1991), 1–20, 21–41.
doi: 10.1088/0266-5611/7/1/004.![]() ![]() ![]() |
[17] |
P. L. Butzer and S. Jansche, A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3 (1997), 325-376.
doi: 10.1007/BF02649101.![]() ![]() ![]() |
[18] |
P. L. Butzer and S. Jansche, The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, Suppl., (special issue dedicated to Professor Calogero Vinti), 46 (1998), 99–122.
![]() ![]() |
[19] |
P. L. Butzer and S. Jansche, A self-contained approach to Mellin transform analysis for square integrable functions; applications, Integral Transform. Spec. Funct., 8 (1999), 175-198.
doi: 10.1080/10652469908819226.![]() ![]() ![]() |
[20] |
P. L. Butzer, G. Schmeisser and R. L. Stens, An introduction to sampling analysis, In: Marvasti, F. (ed. ) Nonuniform Sampling, Theory and Practice, 17–121. Kluwer Academic/Plenum Publishers, New York, (2001).
![]() ![]() |
[21] |
P. L. Butzer, W. Splettstöẞer and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein., 90 (1988), 1-70.
![]() ![]() |
[22] |
P. L. Butzer and R. L. Stens, Linear prediction by samples from the past, In: Marks II, R.J. (ed. ) Advanced Topics in Shannon Sampling and Interpolation Theory, 157–183. Springer, New York, (1993).
![]() ![]() |
[23] |
D. Casasent, Optical signal processing, In: Casasent, D. (ed. ) Optical Data Processing, 241–282. Springer, Berlin, (1978).
doi: 10.1007/BFb0057988.![]() ![]() |
[24] |
D. Costarelli, A. M. Minotti and G. Vinti, Approximation of discontinuous signals by sampling Kantorovich series, J. Math. Anal. Appl., 450 (2017), 1083-1103.
doi: 10.1016/j.jmaa.2017.01.066.![]() ![]() ![]() |
[25] |
D. Costarelli, M. Piconi and G. Vinti, On the convergence properties of Durrmeyer-Sampling type operators in Orlicz spaces, to appear, arXiv: 2007.02450v1, 2021.
![]() |
[26] |
D. Costarelli, M Seracini and G. Vinti, A comparison between the sampling Kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods, Appl. Math. Comput., 347, (2020), 125046, 18 pp.
doi: 10.1016/j. amc. 2020.125046.![]() ![]() ![]() |
[27] |
D. Costarelli, M. Seracini and G. Vinti, A segmentation procedure of the pervious area of the aorta artery from CT images without contrast medium, Math. Methods Appl. Sci., 43 (2020), 114-133.
doi: 10.1002/mma.5838.![]() ![]() ![]() |
[28] |
D. Costarelli and G. Vinti, An inverse result of approximation by sampling Kantorovich series, Proc. Edinb. Math. Soc., 62 (2019), 265-280.
doi: 10.1017/S0013091518000342.![]() ![]() ![]() |
[29] |
D. Costarelli and G. Vinti, Saturation by the Fourier transform method for the sampling Kantorovich series based on bandlimited kernels, Anal. Math. Phys., 9 (2019), 2263-2280.
doi: 10.1007/s13324-019-00334-6.![]() ![]() ![]() |
[30] |
J. R. Higgins, Sampling Theory in Fourier and Signal Analysis, Foundations. Oxford Univ. Press, Oxford, 1996.
![]() |
[31] |
A. Kivinukk and G. Tamberg, Interpolating generalized Shannon sampling operators, their norms and approximation properties, Sampl. Theory Signal Image Process., 8 (2009), 77-95.
doi: 10.1007/BF03549509.![]() ![]() ![]() |
[32] |
A. Kivinukk and G. Tamberg, On window methods in generalized Shannon sampling operators., In New perspectives on approximation and sampling theory, 63–85, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, (2014).
![]() ![]() |
[33] |
A. S. Kumar and S. Bajpeyi, Direct and inverse results for Kantorovich type exponential sampling series, Results Math., 75 (2020), Paper No. 119, 17 pp.
doi: 10.1007/s00025-020-01241-0.![]() ![]() ![]() |
[34] |
A. S. Kumar and D. Ponnaian, Approximation by generalized bivariate Kantorovich sampling type series, J. Anal., 27 (2019), 429-449.
doi: 10.1007/s41478-018-0085-6.![]() ![]() ![]() |
[35] |
A. S. Kumar and B. Shivam, Inverse approximation and GBS of bivariate Kantorovich type sampling series, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), Paper No. 82, 15 pp.
doi: 10.1007/s13398-020-00805-7.![]() ![]() ![]() |
[36] |
N. Ostrowsky, D. Sornette, P. Parker and E. R. Pike, Exponential sampling method for light scattering polydispersity analysis, Opt. Acta, 28 (1981), 1059-1070.
doi: 10.1080/713820704.![]() ![]() |
[37] |
S. Ries and R. L. Stens, Approximation by generalized sampling series, In: Sendov, Bl., Petrushev, P., Maalev, R., Tashev, S. (eds. )Constructive Theory of Functions, pp. 746–756. Pugl. House Bulgarian Academy of Sciences, Sofia, (1984).
![]() |
[38] |
G. Schmeisser, Interconnections between the multiplier methods and the window methods in generalized sampling, Sampl. Theory Signal Image Process., 9 (2010), 1-24.
doi: 10.1007/BF03549522.![]() ![]() ![]() |
[39] |
A. I. Zayed, Advances in Shannon's Sampling Theory, CRC Press, Boca Raton, 1993.
![]() ![]() |