-
Previous Article
Cesàro summability and Lebesgue points of higher dimensional Fourier series
- MFC Home
- This Issue
-
Next Article
Boundedness properties of semi-discrete sampling operators in Mellin–Lebesgue spaces
Korovkin-type approximation of set-valued and vector-valued functions
Department of Mathematics and Physics "E. De Giorgi", University of Salento, Campus Ecotekne, 73100 Lecce, Italy |
We establish some general Korovkin-type results in cones of set-valued functions and in spaces of vector-valued functions. These results constitute a meaningful extension of the preceding ones.
References:
[1] |
F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Berlin-Heidelberg-New York, 1994.
doi: 10.1515/9783110884586. |
[2] |
F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Rașa, Markov Operators, Positive Semigroups and Approximation Processes, , De Gruyter Studies in Mathematics, 61, Berlin-Munich-Boston, 2014.
doi: 10.1515/9783110366976. |
[3] |
M. Campiti, A Korovkin-type theorem for set-valued Hausdorff continuous functions, Matematiche (Catania), 42 (1987), 29–35. |
[4] |
M. Campiti, Approximation of continuous set-valued functions in Fréchet spaces I, Anal. Numér. Théor. Approx., 20 (1991), 15–23. |
[5] |
M. Campiti, Approximation of continuous set-valued functions in Fréchet spaces II, Anal. Numér. Théor. Approx., 20 (1991), 25–38. |
[6] |
M. Campiti, Korovkin theorems for vector-valued continuous functions, in Approximation Theory, Spline Functions and Applications (Internat. Conf., Maratea, May 1991), 293–302, Nato Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 356, Kluwer Acad. Publ., Dordrecht, 1992. |
[7] |
M. Campiti, Convergence of nets of monotone operators between cones of set-valued functions, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 126 (1992), 39–54. |
[8] |
M. Campiti, Convexity-monotone operators in Korovkin theory, Rend. Circ. Mat. Palermo, 33 (1993), 229–238. |
[9] |
M. Campiti, Korovkin-type approximation in spaces of vector-valued and set-valued functions, Appl. Anal., 98 (2019), 2486–2496.
doi: 10.1080/00036811.2018.1463522. |
[10] |
M. Campiti, On the Korovkin-type approximation of set-valued continuous functions, Constr. Math. Anal., 4 (2021), 119–134.
doi: 10.33205/cma. 863145. |
[11] |
K. Keimel and W. Roth, A Korovkin type approximation theorem for set-valued functions, Proc. Amer. Math. Soc., 104 (1988), 819–824.
doi: 10.1090/S0002-9939-1988-0964863-8. |
[12] |
K. Keimel and W. Roth, Ordered Cones and Approximation, Lecture Notes in Mathematics, 1517, Springer-Verlag Berlin Heidelberg, 1992.
doi: 10.1007/BFb0089190. |
show all references
References:
[1] |
F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Berlin-Heidelberg-New York, 1994.
doi: 10.1515/9783110884586. |
[2] |
F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Rașa, Markov Operators, Positive Semigroups and Approximation Processes, , De Gruyter Studies in Mathematics, 61, Berlin-Munich-Boston, 2014.
doi: 10.1515/9783110366976. |
[3] |
M. Campiti, A Korovkin-type theorem for set-valued Hausdorff continuous functions, Matematiche (Catania), 42 (1987), 29–35. |
[4] |
M. Campiti, Approximation of continuous set-valued functions in Fréchet spaces I, Anal. Numér. Théor. Approx., 20 (1991), 15–23. |
[5] |
M. Campiti, Approximation of continuous set-valued functions in Fréchet spaces II, Anal. Numér. Théor. Approx., 20 (1991), 25–38. |
[6] |
M. Campiti, Korovkin theorems for vector-valued continuous functions, in Approximation Theory, Spline Functions and Applications (Internat. Conf., Maratea, May 1991), 293–302, Nato Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 356, Kluwer Acad. Publ., Dordrecht, 1992. |
[7] |
M. Campiti, Convergence of nets of monotone operators between cones of set-valued functions, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 126 (1992), 39–54. |
[8] |
M. Campiti, Convexity-monotone operators in Korovkin theory, Rend. Circ. Mat. Palermo, 33 (1993), 229–238. |
[9] |
M. Campiti, Korovkin-type approximation in spaces of vector-valued and set-valued functions, Appl. Anal., 98 (2019), 2486–2496.
doi: 10.1080/00036811.2018.1463522. |
[10] |
M. Campiti, On the Korovkin-type approximation of set-valued continuous functions, Constr. Math. Anal., 4 (2021), 119–134.
doi: 10.33205/cma. 863145. |
[11] |
K. Keimel and W. Roth, A Korovkin type approximation theorem for set-valued functions, Proc. Amer. Math. Soc., 104 (1988), 819–824.
doi: 10.1090/S0002-9939-1988-0964863-8. |
[12] |
K. Keimel and W. Roth, Ordered Cones and Approximation, Lecture Notes in Mathematics, 1517, Springer-Verlag Berlin Heidelberg, 1992.
doi: 10.1007/BFb0089190. |
[1] |
Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591 |
[2] |
Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041 |
[3] |
Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548 |
[4] |
Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1529-1541. doi: 10.3934/dcdss.2020086 |
[5] |
Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246 |
[6] |
Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial and Management Optimization, 2020, 16 (2) : 707-724. doi: 10.3934/jimo.2018174 |
[7] |
İsmail Aslan, Türkan Yeliz Gökçer. Approximation by pseudo-linear discrete operators. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021037 |
[8] |
Harun Karsli. On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 2021, 4 (1) : 15-30. doi: 10.3934/mfc.2020023 |
[9] |
Danilo Costarelli. Preface: Special issue on approximation by linear and nonlinear operators with applications. Part Ⅱ. Mathematical Foundations of Computing, 2022, 5 (3) : ⅰ-ⅱ. doi: 10.3934/mfc.2022010 |
[10] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[11] |
Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011 |
[12] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
[13] |
Ling-Xiong Han, Wen-Hui Li, Feng Qi. Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28 (2) : 721-738. doi: 10.3934/era.2020037 |
[14] |
Fengfeng Wang, Dansheng Yu, Bin Zhang. On approximation of Bernstein-Durrmeyer operators in movable interval. Mathematical Foundations of Computing, 2022, 5 (4) : 331-342. doi: 10.3934/mfc.2022008 |
[15] |
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115 |
[16] |
Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087 |
[17] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[18] |
Kendry J. Vivas, Víctor F. Sirvent. Metric entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022010 |
[19] |
Peter Giesl, Boumediene Hamzi, Martin Rasmussen, Kevin Webster. Approximation of Lyapunov functions from noisy data. Journal of Computational Dynamics, 2020, 7 (1) : 57-81. doi: 10.3934/jcd.2020003 |
[20] |
Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35 |
Impact Factor:
Tools
Article outline
[Back to Top]