- Previous Article
- MFC Home
- This Issue
-
Next Article
Cesàro summability and Lebesgue points of higher dimensional Fourier series
New approximation properties of the Bernstein max-min operators and Bernstein max-product operators
Department of Mathematics and Computer Science, University of Oradea, Universitatii 1, 410087, Oradea, Romania |
In this paper we put in evidence localization results for the so-called Bernstein max-min operators and a property of translation for the Bernstein max-product operators.
References:
[1] |
A. G. Anastassiou, L. Coroianu and S. G. Gal,
Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind, J. Comp. Anal. Appl., 12 (2010), 396-406.
|
[2] |
B. Bede, L. Coroianu and S. G. Gal,
Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. Math. Sci., 2009 (2009), 590589.
doi: 10.1155/2009/590589. |
[3] |
B. Bede, L. Coroianu and S. G. Gal,
Approximation and shape preserving properties of the nonlinear Meyer-König and Zeller operator of max-product kind, Numer. Funct. Anal. Optim., 31 (2010), 232-253.
doi: 10.1080/01630561003757686. |
[4] |
B. Bede, L. Coroianu and S. G. Gal, Approximation by Max-Product Type Operators, Springer, [Cham], 2016.
doi: 10.1007/978-3-319-34189-7. |
[5] |
B. Bede, H. Nobuhara, J. Fodor and K. Hirota,
Max-product Shepard approximation operators,, J. Adv. Comput. Intell. Inform., 10 (2006), 494-497.
doi: 10.20965/jaciii.2006.p0494. |
[6] |
L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti,
Approximation by max-product sampling Kantorovich operators with generalized kernels, Anal. Appl. (Singap.), 19 (2021), 219-244.
doi: 10.1142/S0219530519500155. |
[7] |
L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti,
Connections between the approximation orders of positive linear operators and their max-product counterparts, Numer. Funct. Anal. Optim., 42 (2021), 1263-1286.
doi: 10.1080/01630563.2021.1954018. |
[8] |
L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti,
The max-product generalized sampling operators: Convergence and quantitative estimates,, Appl. Math. Comput., 355 (2019), 173-183.
doi: 10.1016/j.amc.2019.02.076. |
[9] |
L. Coroianu and S. G. Gal,
Approximation by max-product Lagrange interpolation operators, Stud. Univ. Babeş -Bolyai Math., 56 (2011), 315-325.
|
[10] |
L. Coroianu and S. G. Gal,
Classes of functions with improved estimates in approximation by the max-product Bernstein operator,, Anal. Appl. (Singap.), 9 (2011), 249-274.
doi: 10.1142/S0219530511001856. |
[11] |
L. Coroianu and S. G. Gal,
Localization results for the Bernstein max-product operator,, Appl. Math. Comput., 231 (2014), 73-78.
doi: 10.1016/j.amc.2013.12.190. |
[12] |
L. Coroianu, S. G. Gal and B. Bede,
Approximation of fuzzy numbers by Bernstein operators of max-product kind,, Fuzzy Set. Syst., 257 (2014), 41-66.
doi: 10.1016/j.fss.2013.04.010. |
[13] |
D. Costarelli, A. R. Sambucini and G. Vinti,
Convergence in Orlicz spaces by means of the multivariate max-product neural network operators of the Kantorovich type and applications,, Neural Comput. Appl., 31 (2019), 5069-5078.
doi: 10.1007/s00521-018-03998-6. |
[14] |
D. Costarelli and G. Vinti,
Max-product neural network and quasi-interpolation operators activated by sigmoidal functions,, J. Approx. Theory, 209 (2016), 1-22.
doi: 10.1016/j.jat.2016.05.001. |
[15] |
S. G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008.
doi: 10.1007/978-0-8176-4703-2. |
[16] |
T. Y. Gökçer and O. Duman,
Approximation by max-min operators: A general theory and its applications,, Fuzzy Sets and Systems, 394 (2020), 146-161.
doi: 10.1016/j.fss.2019.11.007. |
[17] |
T. Y. Gökcer and O. Duman,
Summation process by max-product operators,, Computational Analysis, 155 (2016), 59-67.
doi: 10.1007/978-3-319-28443-9_4. |
[18] |
S. Y. Güngör and N. Ispir,
Approximation by Bernstein-Chlodowsky operators of max-product kind., Math. Commun., 23 (2018), 205-225.
|
[19] |
A. Holhoş,
Weighted approximation of functions by Favard operators of max-product type,, Period. Math. Hungar., 77 (2018), 340-346.
doi: 10.1007/s10998-018-0249-9. |
[20] |
A. Holhoş,
Weighted approximation of functions by Meyer-K önig and Zeller operators of max-product type,, Numer. Funct. Anal. Optim., 39 (2018), 689-703.
doi: 10.1080/01630563.2017.1413386. |
[21] |
S. Karakus and K. Demirci,
Statistical $\sigma $-approximation to max-product operators,, Comput. Math. Appl., 61 (2011), 1024-1031.
doi: 10.1016/j.camwa.2010.12.052. |
show all references
References:
[1] |
A. G. Anastassiou, L. Coroianu and S. G. Gal,
Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind, J. Comp. Anal. Appl., 12 (2010), 396-406.
|
[2] |
B. Bede, L. Coroianu and S. G. Gal,
Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. Math. Sci., 2009 (2009), 590589.
doi: 10.1155/2009/590589. |
[3] |
B. Bede, L. Coroianu and S. G. Gal,
Approximation and shape preserving properties of the nonlinear Meyer-König and Zeller operator of max-product kind, Numer. Funct. Anal. Optim., 31 (2010), 232-253.
doi: 10.1080/01630561003757686. |
[4] |
B. Bede, L. Coroianu and S. G. Gal, Approximation by Max-Product Type Operators, Springer, [Cham], 2016.
doi: 10.1007/978-3-319-34189-7. |
[5] |
B. Bede, H. Nobuhara, J. Fodor and K. Hirota,
Max-product Shepard approximation operators,, J. Adv. Comput. Intell. Inform., 10 (2006), 494-497.
doi: 10.20965/jaciii.2006.p0494. |
[6] |
L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti,
Approximation by max-product sampling Kantorovich operators with generalized kernels, Anal. Appl. (Singap.), 19 (2021), 219-244.
doi: 10.1142/S0219530519500155. |
[7] |
L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti,
Connections between the approximation orders of positive linear operators and their max-product counterparts, Numer. Funct. Anal. Optim., 42 (2021), 1263-1286.
doi: 10.1080/01630563.2021.1954018. |
[8] |
L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti,
The max-product generalized sampling operators: Convergence and quantitative estimates,, Appl. Math. Comput., 355 (2019), 173-183.
doi: 10.1016/j.amc.2019.02.076. |
[9] |
L. Coroianu and S. G. Gal,
Approximation by max-product Lagrange interpolation operators, Stud. Univ. Babeş -Bolyai Math., 56 (2011), 315-325.
|
[10] |
L. Coroianu and S. G. Gal,
Classes of functions with improved estimates in approximation by the max-product Bernstein operator,, Anal. Appl. (Singap.), 9 (2011), 249-274.
doi: 10.1142/S0219530511001856. |
[11] |
L. Coroianu and S. G. Gal,
Localization results for the Bernstein max-product operator,, Appl. Math. Comput., 231 (2014), 73-78.
doi: 10.1016/j.amc.2013.12.190. |
[12] |
L. Coroianu, S. G. Gal and B. Bede,
Approximation of fuzzy numbers by Bernstein operators of max-product kind,, Fuzzy Set. Syst., 257 (2014), 41-66.
doi: 10.1016/j.fss.2013.04.010. |
[13] |
D. Costarelli, A. R. Sambucini and G. Vinti,
Convergence in Orlicz spaces by means of the multivariate max-product neural network operators of the Kantorovich type and applications,, Neural Comput. Appl., 31 (2019), 5069-5078.
doi: 10.1007/s00521-018-03998-6. |
[14] |
D. Costarelli and G. Vinti,
Max-product neural network and quasi-interpolation operators activated by sigmoidal functions,, J. Approx. Theory, 209 (2016), 1-22.
doi: 10.1016/j.jat.2016.05.001. |
[15] |
S. G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008.
doi: 10.1007/978-0-8176-4703-2. |
[16] |
T. Y. Gökçer and O. Duman,
Approximation by max-min operators: A general theory and its applications,, Fuzzy Sets and Systems, 394 (2020), 146-161.
doi: 10.1016/j.fss.2019.11.007. |
[17] |
T. Y. Gökcer and O. Duman,
Summation process by max-product operators,, Computational Analysis, 155 (2016), 59-67.
doi: 10.1007/978-3-319-28443-9_4. |
[18] |
S. Y. Güngör and N. Ispir,
Approximation by Bernstein-Chlodowsky operators of max-product kind., Math. Commun., 23 (2018), 205-225.
|
[19] |
A. Holhoş,
Weighted approximation of functions by Favard operators of max-product type,, Period. Math. Hungar., 77 (2018), 340-346.
doi: 10.1007/s10998-018-0249-9. |
[20] |
A. Holhoş,
Weighted approximation of functions by Meyer-K önig and Zeller operators of max-product type,, Numer. Funct. Anal. Optim., 39 (2018), 689-703.
doi: 10.1080/01630563.2017.1413386. |
[21] |
S. Karakus and K. Demirci,
Statistical $\sigma $-approximation to max-product operators,, Comput. Math. Appl., 61 (2011), 1024-1031.
doi: 10.1016/j.camwa.2010.12.052. |
[1] |
Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189 |
[2] |
X. X. Huang, Xiaoqi Yang, K. L. Teo. A smoothing scheme for optimization problems with Max-Min constraints. Journal of Industrial and Management Optimization, 2007, 3 (2) : 209-222. doi: 10.3934/jimo.2007.3.209 |
[3] |
Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial and Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565 |
[4] |
Nursel Çetin. On complex modified Bernstein-Stancu operators. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2021043 |
[5] |
Fengfeng Wang, Dansheng Yu, Bin Zhang. On approximation of Bernstein-Durrmeyer operators in movable interval. Mathematical Foundations of Computing, 2022, 5 (4) : 331-342. doi: 10.3934/mfc.2022008 |
[6] |
Uğur Kadak, Faruk Özger. A numerical comparative study of generalized Bernstein-Kantorovich operators. Mathematical Foundations of Computing, 2021, 4 (4) : 311-332. doi: 10.3934/mfc.2021021 |
[7] |
Purshottam Narain Agrawal, Şule Yüksel Güngör, Abhishek Kumar. Better degree of approximation by modified Bernstein-Durrmeyer type operators. Mathematical Foundations of Computing, 2022, 5 (2) : 75-92. doi: 10.3934/mfc.2021024 |
[8] |
José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415 |
[9] |
John Mallet-Paret, Roger D. Nussbaum. Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 519-562. doi: 10.3934/dcds.2002.8.519 |
[10] |
Harun Karsli. On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 2021, 4 (1) : 15-30. doi: 10.3934/mfc.2020023 |
[11] |
Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial and Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851 |
[12] |
Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019 |
[13] |
Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022 |
[14] |
Hermes H. Ferreira, Artur O. Lopes, Silvia R. C. Lopes. Decision Theory and large deviations for dynamical hypotheses tests: The Neyman-Pearson Lemma, Min-Max and Bayesian tests. Journal of Dynamics and Games, 2022, 9 (2) : 123-150. doi: 10.3934/jdg.2021031 |
[15] |
Abd El-Monem A. Megahed, Ebrahim A. Youness, Hebatallah K. Arafat. Optimization method in counter terrorism: Min-Max zero-sum differential game approach. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022013 |
[16] |
Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861 |
[17] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[18] |
Wenxing Zhu, Yanpo Liu, Geng Lin. Speeding up a memetic algorithm for the max-bisection problem. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 151-168. doi: 10.3934/naco.2015.5.151 |
[19] |
Pierre-A. Vuillermot. On the time evolution of Bernstein processes associated with a class of parabolic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1073-1090. doi: 10.3934/dcdsb.2018142 |
[20] |
Dieudonné Nijimbere, Songzheng Zhao, Xunhao Gu, Moses Olabhele Esangbedo, Nyiribakwe Dominique. Tabu search guided by reinforcement learning for the max-mean dispersion problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3223-3246. doi: 10.3934/jimo.2020115 |
Impact Factor:
Tools
Article outline
[Back to Top]