doi: 10.3934/mfc.2021043
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On complex modified Bernstein-Stancu operators

Ankara Hacı Bayram Veli University, Polatlı Faculty of Science and Letters, Department of Mathematics, 06900, Ankara, Turkey

Received  August 2021 Revised  November 2021 Early access January 2022

The present paper deals with complex form of a generalization of perturbed Bernstein-type operators. Quantitative upper estimates for simultaneous approximation, a qualitative Voronovskaja type result and the exact order of approximation by these operators attached to functions analytic in a disk centered at the origin with radius greater than 1 are obtained in this study.

Citation: Nursel Çetin. On complex modified Bernstein-Stancu operators. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021043
References:
[1]

A. M. Acu and P. N. Agrawal, Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2019), 125-136.  doi: 10.37193/CJM.2019.02.01.

[2]

A. M. Acu and G. Başcanbaz-Tunca, Approximation by complex perturbed Bernstein-type operators, Results Math., 75 (2020), Paper No. 120, 16 pp. doi: 10.1007/s00025-020-01244-x.

[3]

A. M. AcuG. Başcanbaz-Tunca and N. Çetin, Approximation by certain linking operators, Ann. Funct. Anal., 11 (2020), 1184-1202.  doi: 10.1007/s43034-020-00081-x.

[4]

A. M. Acu, V. Gupta and G. Tachev, Better numerical approximation by Durrmeyer type operators, Results Math., 74 (2019), Paper No. 90, 24 pp. doi: 10.1007/s00025-019-1019-6.

[5]

S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Commun. Kharkov Math. Soc., 13 (1912/1913), 1-2. 

[6]

N. Çetin, Approximation and geometric properties of complex $\alpha -$Bernstein operator, Results Math., 74 (2019), Paper No. 40, 16 pp. doi: 10.1007/s00025-018-0953-z.

[7]

N. Çetin, A new generalization of complex Stancu operators, Math. Methods Appl. Sci., 42 (2019), 5582-5594.  doi: 10.1002/mma.5622.

[8]

N. Çetin and G. Başcanbaz-Tunca, Approximation by a new complex generalized Bernstein operators, An. Univ. Oradea Fasc. Mat., 26 (2019), 127-139. 

[9]

R. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.

[10]

S. G. Gal, Approximation by Complex Bernstein and Convolution Type Operators, Series on Concrete and Applicable Mathematics, vol. 8, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. doi: 10.1142/9789814282437.

[11]

V. GuptaG. Tachev and A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (2019), 125-149.  doi: 10.1007/s11075-018-0538-7.

[12]

H. Khosravian-ArabM. Dehghan and M. R. Eslahchi, A new approach to improve the order of approximation of the Bernstein operators: Theory and applications, Numer. Algorithms, 77 (2018), 111-150.  doi: 10.1007/s11075-017-0307-z.

[13]

G. G. Lorentz, Bernstein Polynomials, 2$^{nd}$ edition, Chelsea Publ, New York, 1986.

[14]

D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983), 211-229.  doi: 10.1007/BF02575593.

show all references

References:
[1]

A. M. Acu and P. N. Agrawal, Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2019), 125-136.  doi: 10.37193/CJM.2019.02.01.

[2]

A. M. Acu and G. Başcanbaz-Tunca, Approximation by complex perturbed Bernstein-type operators, Results Math., 75 (2020), Paper No. 120, 16 pp. doi: 10.1007/s00025-020-01244-x.

[3]

A. M. AcuG. Başcanbaz-Tunca and N. Çetin, Approximation by certain linking operators, Ann. Funct. Anal., 11 (2020), 1184-1202.  doi: 10.1007/s43034-020-00081-x.

[4]

A. M. Acu, V. Gupta and G. Tachev, Better numerical approximation by Durrmeyer type operators, Results Math., 74 (2019), Paper No. 90, 24 pp. doi: 10.1007/s00025-019-1019-6.

[5]

S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Commun. Kharkov Math. Soc., 13 (1912/1913), 1-2. 

[6]

N. Çetin, Approximation and geometric properties of complex $\alpha -$Bernstein operator, Results Math., 74 (2019), Paper No. 40, 16 pp. doi: 10.1007/s00025-018-0953-z.

[7]

N. Çetin, A new generalization of complex Stancu operators, Math. Methods Appl. Sci., 42 (2019), 5582-5594.  doi: 10.1002/mma.5622.

[8]

N. Çetin and G. Başcanbaz-Tunca, Approximation by a new complex generalized Bernstein operators, An. Univ. Oradea Fasc. Mat., 26 (2019), 127-139. 

[9]

R. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.

[10]

S. G. Gal, Approximation by Complex Bernstein and Convolution Type Operators, Series on Concrete and Applicable Mathematics, vol. 8, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. doi: 10.1142/9789814282437.

[11]

V. GuptaG. Tachev and A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (2019), 125-149.  doi: 10.1007/s11075-018-0538-7.

[12]

H. Khosravian-ArabM. Dehghan and M. R. Eslahchi, A new approach to improve the order of approximation of the Bernstein operators: Theory and applications, Numer. Algorithms, 77 (2018), 111-150.  doi: 10.1007/s11075-017-0307-z.

[13]

G. G. Lorentz, Bernstein Polynomials, 2$^{nd}$ edition, Chelsea Publ, New York, 1986.

[14]

D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983), 211-229.  doi: 10.1007/BF02575593.

[1]

Fengfeng Wang, Dansheng Yu, Bin Zhang. On approximation of Bernstein-Durrmeyer operators in movable interval. Mathematical Foundations of Computing, 2022, 5 (4) : 331-342. doi: 10.3934/mfc.2022008

[2]

Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861

[3]

Purshottam Narain Agrawal, Behar Baxhaku, Rahul Shukla. A new kind of Bi-variate $ \lambda $ -Bernstein-Kantorovich type operator with shifted knots and its associated GBS form. Mathematical Foundations of Computing, 2022, 5 (3) : 157-172. doi: 10.3934/mfc.2021025

[4]

Lucian Coroianu, Sorin G. Gal. New approximation properties of the Bernstein max-min operators and Bernstein max-product operators. Mathematical Foundations of Computing, 2022, 5 (3) : 259-268. doi: 10.3934/mfc.2021034

[5]

Purshottam Narain Agrawal, Şule Yüksel Güngör, Abhishek Kumar. Better degree of approximation by modified Bernstein-Durrmeyer type operators. Mathematical Foundations of Computing, 2022, 5 (2) : 75-92. doi: 10.3934/mfc.2021024

[6]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[7]

Harun Karsli. On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 2021, 4 (1) : 15-30. doi: 10.3934/mfc.2020023

[8]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[9]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[10]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[11]

Simona Fornaro, Abdelaziz Rhandi. On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5049-5058. doi: 10.3934/dcds.2013.33.5049

[12]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[13]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2139-2154. doi: 10.3934/cpaa.2021061

[14]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[15]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[16]

Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure and Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547

[17]

Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637

[18]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems and Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[19]

Pierre-A. Vuillermot. On the time evolution of Bernstein processes associated with a class of parabolic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1073-1090. doi: 10.3934/dcdsb.2018142

[20]

Uğur Kadak, Faruk Özger. A numerical comparative study of generalized Bernstein-Kantorovich operators. Mathematical Foundations of Computing, 2021, 4 (4) : 311-332. doi: 10.3934/mfc.2021021

 Impact Factor: 

Article outline

[Back to Top]