In the present paper, we consider a general class of operators enriched with some properties in order to act on $ C^{\ast }( \mathbb{R} _{0}^{+}) $. We establish uniform convergence of the operators for every function in $ C^{\ast }( \mathbb{R} _{0}^{+}) $ on $ \mathbb{R} _{0}^{+} $. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.
Citation: |
[1] |
T. Acar, A. Aral and H. Gonska, On Szász-Mirakyan operators preserving $e^2ax$, $a>0$, Mediterr. J. Math., 14 (2017), Paper No. 6, 14 pp.
doi: 10.1007/s00009-016-0804-7.![]() ![]() ![]() |
[2] |
T. Acar, M. Mursaleen and S. N. Deveci, Gamma operators reproducing exponential functions, Adv. Difference Equ., (2020), Paper No. 423, 13 pp.
doi: 10.1186/s13662-020-02880-x.![]() ![]() ![]() |
[3] |
O. Agratini, A. Aral and E. Deniz, On two classes of approximation processes of integral type, Positivity, 21 (2017), 1189-1199.
doi: 10.1007/s11117-016-0460-y.![]() ![]() ![]() |
[4] |
F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics 17., Walter De Gruyter & Co., Berlin, 1994.
doi: 10.1515/9783110884586.![]() ![]() ![]() |
[5] |
G. A. Anastassiou and S. G. Gal, Approximation Theory. Moduli of Continuity and Global Smoothness Preservation, Springer, Birkhäuser, Boston, 2000.
doi: 10.1007/978-1-4612-1360-4.![]() ![]() ![]() |
[6] |
L. Angeloni and G. Vinti, A review on approximation results for integral operators in the space of functions of bounded variation, J. Funct. Spaces, 2016 (2016), Art. ID 3843921, 11 pp.
doi: 10.1155/2016/3843921.![]() ![]() ![]() |
[7] |
P. M. Anselone and I. H. Sloan, Integral equations on the half line, J. of Integral Equations, 9 (1985), 3-23.
![]() ![]() |
[8] |
A. Aral, On generalized Picard integral operators, Advances in Summability and Approximation Theory, (2018), 157–168.
doi: 10.1007/978-981-13-3077-3_9.![]() ![]() ![]() |
[9] |
A. Aral, D. Cárdenas-Morales and P. Garrancho, Bernstein-type operators that reproduce exponential functions, J. Math. Inequal., 12 (2018), 861-872.
doi: 10.7153/jmi-2018-12-64.![]() ![]() ![]() |
[10] |
A. Aral, D. Inoan and I. Raşa, Approximation properties of Szász–Mirakyan operators preserving exponential functions, Positivity, 23 (2019), 233-246.
doi: 10.1007/s11117-018-0604-3.![]() ![]() ![]() |
[11] |
A. Aral, B. Yılmaz and E. Deniz, A new construction of Picard operators on the semi-real axis, (2018), to appear.
![]() |
[12] |
F. Barbieri, Approximation by moment kernels, (Italian), Atti Sem. Mat. Fis. Univ. Modena, 32 (1983), 308-328.
![]() ![]() |
[13] |
C. Bardaro and I. Mantellini, Voronovskaja-type estimates for Mellin convolution operators, Results Math., 50 (2007), 1-16.
doi: 10.1007/s00025-006-0231-3.![]() ![]() ![]() |
[14] |
C. Bardaro and I. Mantellini, A quantitative Voronovskaya formula for Mellin convolution operators, Mediterr. J. Math., 7 (2010), 483-501.
doi: 10.1007/s00009-010-0062-z.![]() ![]() ![]() |
[15] |
C. Bardaro and I. Mantellini, Multivariate moment type operators: Approximation properties in Orlicz spaces, J. Math. Inequal., 2 (2008), 247-259.
doi: 10.7153/jmi-02-22.![]() ![]() ![]() |
[16] |
C. Bardaro, I. Mantellini, G. Uysal and B. Yılmaz, A class of integral operators that fix exponential functions, Mediterr. J. Math., 18 (2021), Paper No. 179, 21 pp.
doi: 10.1007/s00009-021-01819-0.![]() ![]() ![]() |
[17] |
C. Bardaro, J. Musielak and G. Vinti, Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications 9., Walter De Gruyter & Co., Berlin, 2003.
doi: 10.1515/9783110199277.![]() ![]() ![]() |
[18] |
H. Bohman, On approximation of continuous and of analytic functions, Ark. Mat., 2 (1952), 43-56.
doi: 10.1007/BF02591381.![]() ![]() ![]() |
[19] |
B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 14 (1970), 9-13.
![]() ![]() |
[20] |
P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation Vol. 1: One-Dimensional Theory, Pure and Applied Mathematics, Vol. 40. Academic Press, New York-London, 1971.
doi: 10.1007/978-3-0348-7448-9.![]() ![]() ![]() |
[21] |
P. L. Butzer and S. Jansche, A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3 (1997), 325-376.
doi: 10.1007/BF02649101.![]() ![]() ![]() |
[22] |
P. L. Butzer and R. L. Stens, Linear prediction by samples from the past, Advanced Topics in Shannon Sampling and Interpolation Theory, Springer Texts Electrical Eng., Springer, New York, (1993), 157–183.
doi: 10.1007/978-1-4613-9757-1_5.![]() ![]() ![]() |
[23] |
D. Costarelli and G. Vinti, Approximation by nonlinear multivariate sampling Kantorovich type operators and applications to image processing, Numer. Funct. Anal. Optim., 34 (2013), 819-844.
doi: 10.1080/01630563.2013.767833.![]() ![]() ![]() |
[24] |
D. Costarelli and G. Vinti, Asymptotic expansions and Voronovskaja type theorems for the multivariate neural network operators, Mathematical Foundations of Computing, 3 (2020), 41-50.
doi: 10.3934/mfc.2020004.![]() ![]() |
[25] |
A. D. Gadžiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin's theorem, (Russian), Dokl. Akad. Nauk SSSR, 218 (1974), 1001-1004.
![]() ![]() |
[26] |
V. Gupta and V. K. Singh, Modified Post-Widder operators preserving exponential functions, Advances in Mathematical Methods and High Performance Computing, 41 (2019), 181-192.
doi: 10.1007/978-3-030-02487-1_10.![]() ![]() ![]() |
[27] |
V. Gupta and G. Tachev, On approximation properties of Phillips operators preserving exponential functions, Mediterr. J. Math., 14 (2017), Paper No. 177, 12 pp.
doi: 10.1007/s00009-017-0981-z.![]() ![]() ![]() |
[28] |
A. Holhoş, The rate of approximation of functions in an infinite interval by positive linear operators, Stud. Univ. Babeş–Bolyai Math., 55 (2010), 133–142.
![]() ![]() |
[29] |
A. Holhoş, Quantitative estimates of Voronovskaya type in weighted spaces, Results Math., 73 (2018), Paper No. 53, 11 pp.
doi: 10.1007/s00025-018-0814-9.![]() ![]() ![]() |
[30] |
H. Karslı, Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters, Appl. Anal., 85 (2006), 781-791.
doi: 10.1080/00036810600712665.![]() ![]() ![]() |
[31] |
J. P. King, Positive linear operators which preserve x2, Acta Math. Hungar., 99 (2003), 203-208.
doi: 10.1023/A:1024571126455.![]() ![]() ![]() |
[32] |
P. P. Korovkin, On convergence of linear positive operators in the spaces of continuous functions, (Russian), Doklady Akad. Nauk. SSSR (N.S.), 90 (1953), 961-964.
![]() ![]() |
[33] |
P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corp., Delhi, 1960.
![]() ![]() |
[34] |
A. Lupaş and M. Müller, Approximationseigenschaften der Gammaoperatoren, (German), Math. Z., 98 (1967), 208-226.
doi: 10.1007/BF01112415.![]() ![]() ![]() |
[35] |
R. G. Mamedov, The Mellin Transform and Approximation Theory, (Russian) "Elm", Baku, 1991.
![]() ![]() |
[36] |
C. P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators, Canadian J. Math., 28 (1976), 1224-1250.
doi: 10.4153/CJM-1976-123-8.![]() ![]() ![]() |
[37] |
I. P. Natanson, Theory of Functions of a Real Variable Vol. Ⅱ., Frederick Ungar Pub. Co., New York, 1961.
![]() ![]() |
[38] |
R. S. Phillips, An inversion formula for Laplace transforms and semi-groups of linear operators, Ann. of Math., 59 (1954), 325-356.
doi: 10.2307/1969697.![]() ![]() ![]() |
[39] |
L. Rempulska and K. Tomczak, On some properties of the Picard operators, Arch. Math. (Brno), 45 (2009), 125-135.
![]() ![]() |
[40] |
L. L. Schumaker, Spline Functions: Basic Theory, 3$^rd$ edition, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9780511618994.![]() ![]() ![]() |
[41] |
T. Świderski and E. Wachnicki, Nonlinear singular integrals depending on two parameters, Comment. Math. (Prace Mat.), 40 (2000), 181-189.
![]() ![]() |
[42] |
E. V. Voronovskaya, Determination of the asymptotic form of approximation of functions by the polynomials of S. N. Bernstein, Dokl. Akad. Nauk SSSR, A, (1932), 79–85.
![]() |
[43] |
E. Wachnicki and G. Krech, Approximation of functions by nonlinear singular integral operators depending on two parameters, Publ. Math. Debrecen, 92 (2018), 481-494.
doi: 10.5486/PMD.2018.8080.![]() ![]() ![]() |
[44] |
D. V. Widder, The Laplace Transform, Princeton Mathematical Series, Vol. 6. Princeton Univ. Press, Princeton, 1941.
![]() ![]() |
[45] |
B. Yılmaz, G. Uysal and A. Aral, Reconstruction of two approximation processes in order to reproduce $e^ax$ and $e^2ax$, $a>0$, J. Math. Inequal., 15 (2021), 1101-1118.
doi: 10.7153/jmi-2021-15-75.![]() ![]() |