\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A generalized projection iterative method for solving non-singular linear systems

  • *Corresponding author: Manideepa Saha

    *Corresponding author: Manideepa Saha

The work was supported by Department of Science and Technology-Science and Engineering Research Board (grant no. ECR/2017/002116)

Abstract Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • In this paper, we propose and analyze iterative method based on projection techniques to solve a non-singular linear system $ Ax = b $. In particular, for a given positive integer $ m $, $ m $-dimensional successive projection method ($ m $D-SPM) for symmetric positive definite matrix $ A $, is generalized for non-singular matrix $ A $. Moreover, it is proved that $ m $D-SPM gives better result for large values of $ m $. Numerical experiments are carried out to demonstrate the superiority of the proposed method in comparison with other schemes in the scientific literature.

    Mathematics Subject Classification: Primary: 15A06, 65F10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Results for 4.1

    Iteration Process No of Iterations Relative Residual
    GMRES 9 $ 1.2 \times 10^{-7} $
    LSQR 7 $ 5.5 \times 10^{-8} $
    $ 3 $D-OPM 20 $ 6.7857 \times 10^{-7} $
    $ 10 $D-OPM 6 $ 5.9894\times 10^{-7} $
    $ 20 $D-OPM 3 $ 5.0539\times 10^{-7} $
    $ 50 $D-OPM 2 $ 2.0235\times 10^{-11} $
     | Show Table
    DownLoad: CSV

    Table 2.  Results for 4.2

    Iteration Process No of Iterations Relative Residual
    GMRES 9 $ 1.9 \times 10^{-7} $
    BiCG 9 $ 2.0 \times 10^{-7} $
    LSQR 2 $ 3.2 \times 10^{-16} $
    $ 3 $D-OPM 3 $ 4.5922 \times 10^{-7} $
    $ 10 $D-OPM 1 $ 9.5332\times 10^{-8} $
    $ 20 $D-OPM 1 $ 9.1\times 10^{-15} $
    $ 50 $D-OPM 1 $ 6.3231\times 10^{-17} $
     | Show Table
    DownLoad: CSV

    Table 3.  Results for 4.3

    Iteration Process No of Iterations Relative Residual
    GMRES 10 $ 2.7 \times 10^{-7} $
    BiCG 10 $ 2.8 \times 10^{-7} $
    LSQR 13 $ 7.4 \times 10^{-7} $
    $ 3 $D-OPM 4 $ 4.6042 \times 10^{-7} $
    $ 10 $D-OPM 2 $ 2.62\times 10^{-11} $
    $ 20 $D-OPM 1 $ 1.9751\times 10^{-11} $
     | Show Table
    DownLoad: CSV
  • [1] R. A. Horn and  C. R. JohnsonTopics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.  doi: 10.1017/CBO9780511840371.
    [2] G. Hou and L. Wang, A generalized iterative method and comparision results using projection techniques for solving linear systems, Appl. Math. Comput., 215 (2009), 806-817.  doi: 10.1016/j.amc.2009.06.004.
    [3] Y.-F. Jing and T.-Z. Huang, On a new iterative method for solving linear systems and comparision results, J. Comput. Appl. Math., 220 (2008), 74-84.  doi: 10.1016/j.cam.2007.07.035.
    [4] N. M. NachtigalS. C. Reddy and L. N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), 778-795.  doi: 10.1137/0613049.
    [5] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), 43-71.  doi: 10.1145/355984.355989.
    [6] Y. Saad, Iterative Methods for Sparse Linear Systems, 2$^nd$ edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. doi: 10.1137/1.9780898718003.
    [7] D. K. Salkuyeh, A generalization of the 2D-DSPM for solving linear system of equations, prperint, 2009, arXiv: 0906.1798.
    [8] X. Sheng, Y. Su and G. Chen, A modification of minimal residual iterative method to solve linear systems, Math. Probl. Eng., 2009 (2009), 9pp. doi: 10.1155/2009/794589.
    [9] N. Ujević, A new iterative method for solving linear systems, Appl. Math. Comput., 179 (2006), 725-730.  doi: 10.1016/j.amc.2005.11.128.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(263) PDF downloads(272) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return