doi: 10.3934/mfc.2022020
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Intelligent fault diagnosis method of spacecraft control system based on sequence data-image mapping

Science and Technology on Space Intelligent Control Laboratory, Beijing Institute of Control Engineering, Beijing 100190, China

*Corresponding author: Chengrui Liu

Received  December 2021 Revised  March 2022 Early access July 2022

Fund Project: This work was supported by the National Natural Science Funds for Excellent Young Scholars of China under Grant 62022013

Satellite networking, as the future development direction of aero-space, requires high-precision autonomous fault diagnosis capability for a single satellite. In this paper, aiming at the characteristics of closed-loop fault propagation and high data dimensionality of spacecraft control system, neural network algorithms are conducted to study the fault diagnosis of spacecraft high-dimensional coupled data. Based on the ground test data of a certain spacecraft, this paper converts the high-dimensional sequence data into grayscale images, and then uses Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to diagnose them respectively. The effectiveness of the methods in this paper is illustrated by comparing and validating them with three non-image-based machine learning algorithms, namely, K-NearestNeighbor, Bayesian classifier, and K-NearestNeighbor based on Principal Component Analysis.

Citation: Hanyu Liang, Chengrui Liu, Wenjing Liu, Wenbo Li, Heyu Xu. Intelligent fault diagnosis method of spacecraft control system based on sequence data-image mapping. Mathematical Foundations of Computing, doi: 10.3934/mfc.2022020
References:
[1]

S. AiJ. Song and G. Cai, A real-time fault diagnosis method for hypersonic air vehicle with sensor fault based on the auto temporal convolutional network, Aerospace Science and Technology, 119 (2021), 107220.  doi: 10.1016/j.ast.2021.107220.

[2]

D. Bergman, B. Glass, K. Zacny and G. Paulsen, Using Distributed Transfer Function method (DTFM) for autonomous health monitoring of interplanetary drills, AIAA SPACE 2015 Conference and Exposition, Pasadena, CA, USA, (2015), 2015–4482. doi: 10.2514/6.2015-4482.

[3]

S. BelagouneN. BaliA. BakdiB. Baadji and K. Atif, Deep learning through LSTM classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems, Measurement, 117 (2021), 109330.  doi: 10.1016/j.measurement.2021.109330.

[4]

G. J. Clark, W. Eddy, S. K. Johnson, J. Barnes and D. Brooks, Architecture for cognitive networking within NASA's future space communications infrastructure, 34th AIAA International Communications Satellite Systems Conference, (2016), 2016–5725. doi: 10.2514/6.2016-5725.

[5]

F. Cheng, X. Guo, Y. Qi, J. Xu, W. Qiu, Z. Zhang, W. Zhang and N. Qi, Research on satellite power anomaly detection method based on LSTM, 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), (2021), 20528754. doi: 10.1109/ICPECA51329.2021.9362601.

[6]

M. DaigleA. Bregon and I. Roychoudhury, Qualitative event-based diagnosis with possible conflicts applied to spacecraft power distribution systems, IFAC Proceedings Volumes, 45 (2012), 265-270.  doi: 10.3182/20120829-3-MX-2028.00084.

[7]

A. FalcozF. BoquetM. DinhB. PolleG. Flandin and E. Bornschlegl, Robust fault diagnosis strategies for spacecraft application to LISA Pathfinder experiment, IFAC Proceedings Volumes, 43 (2010), 404-409.  doi: 10.3182/20100906-5-JP-2022.00069.

[8]

D. GaoY. ZhuZ. RenK. Yan and W. Kang, A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity, Knowledge-Based Systems, 231 (2021), 107413.  doi: 10.1016/j.knosys.2021.107413.

[9]

M. GanesanR. Lavanya and M. Nirmala Devi, Fault detection in satellite power system using convolutional neural network, Telecommunication Systems, 76 (2021), 505-511.  doi: 10.1007/s11235-020-00722-5.

[10]

Q. Hu, G. Niu and C. Wang, Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation, Aerospace Science and Technology, 75 (2018), 245-253.

[11]

D. HenryC. Le PeuvédicL. Strippoli and F. Ankersen, Robust model-based fault diagnosis of thruster faults in spacecraft, IFAC-PapersOnLine, 48 (2015), 1078-1083.  doi: 10.1016/j.ifacol.2015.09.670.

[12]

Y. HuaL. Mou and X. Zhu, Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification, ISPRS Journal of Photogrammetry and Remote Sensing, 149 (2019), 188-199.  doi: 10.1016/j.isprsjprs.2019.01.015.

[13]

M. S. Islam and A. Rahimi, Fault prognosis of satellite reaction wheels using a two-step LSTM network, 2021 IEEE International Conference on Prognostics and Health Management (ICPHM), (2021).

[14]

Y. LiQ. Hu and X. Shao, Neural network-based fault diagnosis for spacecraft with single-gimbal control moment gyros, Chinese Journal of Aeronautics, 35 (2021), 261-273.  doi: 10.1016/j.cja.2021.11.020.

[15]

J. LiY. Liu and Q. Li, Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method, Measurement, 189 (2021), 110500.  doi: 10.1016/j.measurement.2021.110500.

[16]

Y. LiX. DuF. WanX. Wang and H. Yu, Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging, Chinese Journal of Aeronautics, 33 (2020), 427-438.  doi: 10.1016/j.cja.2019.08.014.

[17]

Y. Liu, Q. Pan, H. Wang and T. He, Fault diagnosis of satellite flywheel bearing based on convolutional neural network, 2019 Prognostics and System Health Management Conference (PHM-Qingdao), (2019), 8942957. doi: 10.1109/PHM-Qingdao46334.2019.8942957.

[18]

D. LongX. WenJ. Wang and B. Wei, A data fusion fault diagnosis method based on LSTM and DWT for satellite reaction flywheel, Mathematical Problems in Engineering, 2020 (2020), 2893263.  doi: 10.1155/2020/2893263.

[19]

Z. MengY. ZhangB. ZhuZ. PanL. CuiJ. Li and F. Fan, Research on rolling bearing fault diagnosis method based on ARMA and optimized MOMEDA, Measurement, 189 (2021), 110465.  doi: 10.1016/j.measurement.2021.110465.

[20]

H. RuanY. WangX. LiY. Qin and B. Tang, An enhanced non-local weakly supervised fault diagnosis method for rotating machinery, Measurement, 189 (2021), 110433.  doi: 10.1016/j.measurement.2021.110433.

[21]

J. ShiD. PengZ. PengZ. ZhangL. Goebol and D. Wu, Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks, Mechanical Systems and Signal Processing, 162 (2022), 107996.  doi: 10.1016/j.ymssp.2021.107996.

[22]

S. Tariq, S. Lee and Y. Shin, M. S. Lee, O. Jung, D. Chung and S. S. Woo, Detecting anomalies in space using multivariate convolutional LSTM with mixtures of probabilistic PCA, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (2019), 3330776. doi: 10.1145/3292500.3330776.

[23]

R. WangY. Cheng and M. Xu, Analytical redundancy based fault diagnosis scheme for satellite attitude control systems, Journal of the Franklin Institute, 352 (2015), 1906-1931.  doi: 10.1016/j.jfranklin.2015.02.003.

[24]

Y. XiaJ. ZhouT. Xu and W. Gao, An improved deep convolutional neural network model with kernel loss function in image classification, Mathematical Foundations of Computing, 3 (2020), 51-64.  doi: 10.3934/mfc.2020005.

[25]

J. XuL. ZhouW. ZhaoY. Fan and X. Ding, Zero-shot learning for compound fault diagnosis of bearings, Expert Systems with Applications, 190 (2022), 116197.  doi: 10.1109/IJCNN52387.2021.9534279.

[26]

B. Xiao and S. Yin, A deep learning-based data-driven thruster fault diagnosis approach for satellite attitude control system, IEEE Transactions on Industrial Electronics, 68 (2020), 10162-10170.  doi: 10.1109/TIE.2020.3026272.

[27]

Z. ZhangS. LiJ. LuY. Xin and H. Ma, Intrinsic component filtering for fault diagnosis of rotating machinery, Chinese Journal of Aeronautics, 34 (2021), 397-409.  doi: 10.1016/j.cja.2020.07.019.

[28]

C. ZhangY. LiuF. WanB. ChenJ. Liu and B. Hu, Multi-faults diagnosis of rolling bearings via adaptive customization of flexible analytical wavelet bases, Chinese Journal of Aeronautics, 33 (2020), 407-417.  doi: 10.1016/j.cja.2019.03.014.

[29]

J. ZhangY. SunL. GuoH. GaoX. Hong and H. Song, A new bearing fault diagnosis method based on modified convolutional neural networks, Chinese Journal of Aeronautics, 33 (2020), 439-447.  doi: 10.1016/j.cja.2019.07.011.

[30]

F. ZhouR. HangQ. Liu and X. Yuan, Hyperspectral image classification using spectral-spatial LSTMs, CCCV 2017: Computer Vision, 771 (2017), 557-558.  doi: 10.1007/978-981-10-7299-4_48.

[31]

Q. ZhangJ. ZhangJ. Zou and S. Fan, A novel fault diagnosis method based on stacked LSTM, IFAC-PapersOnLine, 53 (2020), 790-795.  doi: 10.1016/j.ifacol.2020.12.832.

[32]

F. ZhaoZ. ZhangM. HuY. Deng and X. Shen, Exo-atmospheric infrared objects classification based on dual-channel LSTM network, Infrared Physics & Technology, 111 (2020), 103535.  doi: 10.1016/j.infrared.2020.103535.

show all references

References:
[1]

S. AiJ. Song and G. Cai, A real-time fault diagnosis method for hypersonic air vehicle with sensor fault based on the auto temporal convolutional network, Aerospace Science and Technology, 119 (2021), 107220.  doi: 10.1016/j.ast.2021.107220.

[2]

D. Bergman, B. Glass, K. Zacny and G. Paulsen, Using Distributed Transfer Function method (DTFM) for autonomous health monitoring of interplanetary drills, AIAA SPACE 2015 Conference and Exposition, Pasadena, CA, USA, (2015), 2015–4482. doi: 10.2514/6.2015-4482.

[3]

S. BelagouneN. BaliA. BakdiB. Baadji and K. Atif, Deep learning through LSTM classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems, Measurement, 117 (2021), 109330.  doi: 10.1016/j.measurement.2021.109330.

[4]

G. J. Clark, W. Eddy, S. K. Johnson, J. Barnes and D. Brooks, Architecture for cognitive networking within NASA's future space communications infrastructure, 34th AIAA International Communications Satellite Systems Conference, (2016), 2016–5725. doi: 10.2514/6.2016-5725.

[5]

F. Cheng, X. Guo, Y. Qi, J. Xu, W. Qiu, Z. Zhang, W. Zhang and N. Qi, Research on satellite power anomaly detection method based on LSTM, 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), (2021), 20528754. doi: 10.1109/ICPECA51329.2021.9362601.

[6]

M. DaigleA. Bregon and I. Roychoudhury, Qualitative event-based diagnosis with possible conflicts applied to spacecraft power distribution systems, IFAC Proceedings Volumes, 45 (2012), 265-270.  doi: 10.3182/20120829-3-MX-2028.00084.

[7]

A. FalcozF. BoquetM. DinhB. PolleG. Flandin and E. Bornschlegl, Robust fault diagnosis strategies for spacecraft application to LISA Pathfinder experiment, IFAC Proceedings Volumes, 43 (2010), 404-409.  doi: 10.3182/20100906-5-JP-2022.00069.

[8]

D. GaoY. ZhuZ. RenK. Yan and W. Kang, A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity, Knowledge-Based Systems, 231 (2021), 107413.  doi: 10.1016/j.knosys.2021.107413.

[9]

M. GanesanR. Lavanya and M. Nirmala Devi, Fault detection in satellite power system using convolutional neural network, Telecommunication Systems, 76 (2021), 505-511.  doi: 10.1007/s11235-020-00722-5.

[10]

Q. Hu, G. Niu and C. Wang, Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation, Aerospace Science and Technology, 75 (2018), 245-253.

[11]

D. HenryC. Le PeuvédicL. Strippoli and F. Ankersen, Robust model-based fault diagnosis of thruster faults in spacecraft, IFAC-PapersOnLine, 48 (2015), 1078-1083.  doi: 10.1016/j.ifacol.2015.09.670.

[12]

Y. HuaL. Mou and X. Zhu, Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification, ISPRS Journal of Photogrammetry and Remote Sensing, 149 (2019), 188-199.  doi: 10.1016/j.isprsjprs.2019.01.015.

[13]

M. S. Islam and A. Rahimi, Fault prognosis of satellite reaction wheels using a two-step LSTM network, 2021 IEEE International Conference on Prognostics and Health Management (ICPHM), (2021).

[14]

Y. LiQ. Hu and X. Shao, Neural network-based fault diagnosis for spacecraft with single-gimbal control moment gyros, Chinese Journal of Aeronautics, 35 (2021), 261-273.  doi: 10.1016/j.cja.2021.11.020.

[15]

J. LiY. Liu and Q. Li, Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method, Measurement, 189 (2021), 110500.  doi: 10.1016/j.measurement.2021.110500.

[16]

Y. LiX. DuF. WanX. Wang and H. Yu, Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging, Chinese Journal of Aeronautics, 33 (2020), 427-438.  doi: 10.1016/j.cja.2019.08.014.

[17]

Y. Liu, Q. Pan, H. Wang and T. He, Fault diagnosis of satellite flywheel bearing based on convolutional neural network, 2019 Prognostics and System Health Management Conference (PHM-Qingdao), (2019), 8942957. doi: 10.1109/PHM-Qingdao46334.2019.8942957.

[18]

D. LongX. WenJ. Wang and B. Wei, A data fusion fault diagnosis method based on LSTM and DWT for satellite reaction flywheel, Mathematical Problems in Engineering, 2020 (2020), 2893263.  doi: 10.1155/2020/2893263.

[19]

Z. MengY. ZhangB. ZhuZ. PanL. CuiJ. Li and F. Fan, Research on rolling bearing fault diagnosis method based on ARMA and optimized MOMEDA, Measurement, 189 (2021), 110465.  doi: 10.1016/j.measurement.2021.110465.

[20]

H. RuanY. WangX. LiY. Qin and B. Tang, An enhanced non-local weakly supervised fault diagnosis method for rotating machinery, Measurement, 189 (2021), 110433.  doi: 10.1016/j.measurement.2021.110433.

[21]

J. ShiD. PengZ. PengZ. ZhangL. Goebol and D. Wu, Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks, Mechanical Systems and Signal Processing, 162 (2022), 107996.  doi: 10.1016/j.ymssp.2021.107996.

[22]

S. Tariq, S. Lee and Y. Shin, M. S. Lee, O. Jung, D. Chung and S. S. Woo, Detecting anomalies in space using multivariate convolutional LSTM with mixtures of probabilistic PCA, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (2019), 3330776. doi: 10.1145/3292500.3330776.

[23]

R. WangY. Cheng and M. Xu, Analytical redundancy based fault diagnosis scheme for satellite attitude control systems, Journal of the Franklin Institute, 352 (2015), 1906-1931.  doi: 10.1016/j.jfranklin.2015.02.003.

[24]

Y. XiaJ. ZhouT. Xu and W. Gao, An improved deep convolutional neural network model with kernel loss function in image classification, Mathematical Foundations of Computing, 3 (2020), 51-64.  doi: 10.3934/mfc.2020005.

[25]

J. XuL. ZhouW. ZhaoY. Fan and X. Ding, Zero-shot learning for compound fault diagnosis of bearings, Expert Systems with Applications, 190 (2022), 116197.  doi: 10.1109/IJCNN52387.2021.9534279.

[26]

B. Xiao and S. Yin, A deep learning-based data-driven thruster fault diagnosis approach for satellite attitude control system, IEEE Transactions on Industrial Electronics, 68 (2020), 10162-10170.  doi: 10.1109/TIE.2020.3026272.

[27]

Z. ZhangS. LiJ. LuY. Xin and H. Ma, Intrinsic component filtering for fault diagnosis of rotating machinery, Chinese Journal of Aeronautics, 34 (2021), 397-409.  doi: 10.1016/j.cja.2020.07.019.

[28]

C. ZhangY. LiuF. WanB. ChenJ. Liu and B. Hu, Multi-faults diagnosis of rolling bearings via adaptive customization of flexible analytical wavelet bases, Chinese Journal of Aeronautics, 33 (2020), 407-417.  doi: 10.1016/j.cja.2019.03.014.

[29]

J. ZhangY. SunL. GuoH. GaoX. Hong and H. Song, A new bearing fault diagnosis method based on modified convolutional neural networks, Chinese Journal of Aeronautics, 33 (2020), 439-447.  doi: 10.1016/j.cja.2019.07.011.

[30]

F. ZhouR. HangQ. Liu and X. Yuan, Hyperspectral image classification using spectral-spatial LSTMs, CCCV 2017: Computer Vision, 771 (2017), 557-558.  doi: 10.1007/978-981-10-7299-4_48.

[31]

Q. ZhangJ. ZhangJ. Zou and S. Fan, A novel fault diagnosis method based on stacked LSTM, IFAC-PapersOnLine, 53 (2020), 790-795.  doi: 10.1016/j.ifacol.2020.12.832.

[32]

F. ZhaoZ. ZhangM. HuY. Deng and X. Shen, Exo-atmospheric infrared objects classification based on dual-channel LSTM network, Infrared Physics & Technology, 111 (2020), 103535.  doi: 10.1016/j.infrared.2020.103535.

Figure 1.  The AOCS of spacecraft
Figure 2.  The closed-loop characteristic of spacecraft fault
Figure 3.  Mapping of high-dimensional data to pattern data
Figure 4.  The architecture of CNN
Figure 5.  The structure diagram of Long Short-Term Memory network gate unit
Figure 6.  The image processing principle of LSTM
Figure 7.  The architecture of LSTM
Figure 8.  2D visualization image of Dataset1
Figure 9.  2D visualization image of Dataset2
Figure 10.  The experimental fault diagnosis results on Dataset 1
Figure 11.  Confusion matrixes of each model
Figure 12.  The fault diagnosis results for mixed faults
Figure 13.  Confusion matrixes of each model for mixed faults
Table 1.  Hyperparameters of CNN
Notation Description Kernel size Stride Kernel number
Input Input data 9$ \times $9 $ \backslash $ $ \backslash $
Conv1 Convolution 3$ \times $3 1$ \times $1 32
P1 Max pooling 1$ \times $1 1$ \times $1 32
Conv2 Convolution 3$ \times $3 1$ \times $1 64
P2 Max pooling 3$ \times $3 3$ \times $3 64
F Fully connected 576$ \times $1 $ \backslash $ $ \backslash $
Notation Description Kernel size Stride Kernel number
Input Input data 9$ \times $9 $ \backslash $ $ \backslash $
Conv1 Convolution 3$ \times $3 1$ \times $1 32
P1 Max pooling 1$ \times $1 1$ \times $1 32
Conv2 Convolution 3$ \times $3 1$ \times $1 64
P2 Max pooling 3$ \times $3 3$ \times $3 64
F Fully connected 576$ \times $1 $ \backslash $ $ \backslash $
Table 2.  Fault mode
Number Fault mode Fault device
1 Constant deviance fault of CMG The gimbal angular velocity of the 2nd CMG
2 Noise increase fault of gyroscope The 1st gyroscope
3 Saturation fault of gyroscope The 3rd gyroscope
4 Constant deviance fault of gyroscope output The 4th gyroscope
5 Constant fault of gyroscope output The 4th gyroscope
Number Fault mode Fault device
1 Constant deviance fault of CMG The gimbal angular velocity of the 2nd CMG
2 Noise increase fault of gyroscope The 1st gyroscope
3 Saturation fault of gyroscope The 3rd gyroscope
4 Constant deviance fault of gyroscope output The 4th gyroscope
5 Constant fault of gyroscope output The 4th gyroscope
Table 3.  Fault type
Number in Dataset 2 Fault mode Fault device and its amplitude
6 Chord width over-tolerance of infrared earth sensor The 1st infrared earth sensor and its chord width is 4.538.
7 The 1st infrared earth sensor and its chord width is 3.
8 Ground entry angle over-tolerance of infrared earth sensor The 2nd infrared earth sensor and its ground entry angle is 2.793°.
9 The 2nd infrared earth sensor and its ground entry angle is 1.5°.
Number in Dataset 2 Fault mode Fault device and its amplitude
6 Chord width over-tolerance of infrared earth sensor The 1st infrared earth sensor and its chord width is 4.538.
7 The 1st infrared earth sensor and its chord width is 3.
8 Ground entry angle over-tolerance of infrared earth sensor The 2nd infrared earth sensor and its ground entry angle is 2.793°.
9 The 2nd infrared earth sensor and its ground entry angle is 1.5°.
Table 4.  Model parameter setting of non-image-based algorithms
Name Setting
KNN $k$=4
Distance formula: Euclidean distance
NB Gaussian Bayes
PCA+KNN PCA: Remain 99.9% of features
KNN: $k$=4,
Distance formula: Euclidean distance
Name Setting
KNN $k$=4
Distance formula: Euclidean distance
NB Gaussian Bayes
PCA+KNN PCA: Remain 99.9% of features
KNN: $k$=4,
Distance formula: Euclidean distance
Table 5.  Results of Dataset 1
Name Accuracy $ \pm $ standard deviation
KNN 98.61$ \pm $0.32
NB 92.83$ \pm $0.68
PCA+KNN 88.10$ \pm $0.79
CNN 100.00$ \pm $0.01
LSTM 99.96$ \pm $0.69
Name Accuracy $ \pm $ standard deviation
KNN 98.61$ \pm $0.32
NB 92.83$ \pm $0.68
PCA+KNN 88.10$ \pm $0.79
CNN 100.00$ \pm $0.01
LSTM 99.96$ \pm $0.69
Table 6.  Model parameter updated setting of non-image-based algorithms
Name Setting
KNN $k$=3
Distance formula: Euclidean distance
NB Gaussian Bayes
PCA+KNN PCA: Remain 99.99999% of features
KNN: $k$=3,
Distance formula: Euclidean distance
Name Setting
KNN $k$=3
Distance formula: Euclidean distance
NB Gaussian Bayes
PCA+KNN PCA: Remain 99.99999% of features
KNN: $k$=3,
Distance formula: Euclidean distance
Table 7.  Mixed fault results
Name Accuracy $ \pm $ standard deviation
KNN 91.59$ \pm $0.43
NB 98.10$ \pm $0.21
PCA+KNN 84.47$ \pm $0.53
CNN 100.00$ \pm $0.06
LSTM 99.86$ \pm $1.87
Name Accuracy $ \pm $ standard deviation
KNN 91.59$ \pm $0.43
NB 98.10$ \pm $0.21
PCA+KNN 84.47$ \pm $0.53
CNN 100.00$ \pm $0.06
LSTM 99.86$ \pm $1.87
[1]

Yuantian Xia, Juxiang Zhou, Tianwei Xu, Wei Gao. An improved deep convolutional neural network model with kernel loss function in image classification. Mathematical Foundations of Computing, 2020, 3 (1) : 51-64. doi: 10.3934/mfc.2020005

[2]

Xuping Xie, Feng Bao, Thomas Maier, Clayton Webster. Analytic continuation of noisy data using Adams Bashforth residual neural network. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 877-892. doi: 10.3934/dcdss.2021088

[3]

Takashi Hara and Gordon Slade. The incipient infinite cluster in high-dimensional percolation. Electronic Research Announcements, 1998, 4: 48-55.

[4]

Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1327-1340. doi: 10.3934/dcdss.2019091

[5]

Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen. How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods. Mathematical Foundations of Computing, 2018, 1 (2) : 149-180. doi: 10.3934/mfc.2018008

[6]

Wayne B. Hayes, Kenneth R. Jackson, Carmen Young. Rigorous high-dimensional shadowing using containment: The general case. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 329-342. doi: 10.3934/dcds.2006.14.329

[7]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[8]

Hansol Park. Generalization of the Winfree model to the high-dimensional sphere and its emergent dynamics. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 707-735. doi: 10.3934/dcds.2021134

[9]

Lican Kang, Yanming Lai, Yanyan Liu, Yuan Luo, Jing Zhang. High-dimensional linear regression with hard thresholding regularization: Theory and algorithm. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022034

[10]

Sen Zou, Shuai Lu, Boxi Xu. Linearized inverse Schrödinger potential problem with partial data and its deep neural network inversion. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022045

[11]

Heyu Xu, Fangzhou Fu. A data-driven configurability evaluation method for spacecraft control systems. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022022

[12]

Junying Hu, Xiaofei Qian, Jun Pei, Changchun Tan, Panos M. Pardalos, Xinbao Liu. A novel quality prediction method based on feature selection considering high dimensional product quality data. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2977-3000. doi: 10.3934/jimo.2021099

[13]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems and Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[14]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[15]

Yaxian Xu, Ajay Jasra. Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects. Foundations of Data Science, 2019, 1 (1) : 61-85. doi: 10.3934/fods.2019003

[16]

Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 359-386. doi: 10.3934/dcdss.2021041

[17]

Franziska Nestler, Martin Stoll, Theresa Wagner. Learning in high-dimensional feature spaces using ANOVA-based fast matrix-vector multiplication. Foundations of Data Science, 2022, 4 (3) : 423-440. doi: 10.3934/fods.2022012

[18]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[19]

Michele La Rocca, Cira Perna. Designing neural networks for modeling biological data: A statistical perspective. Mathematical Biosciences & Engineering, 2014, 11 (2) : 331-342. doi: 10.3934/mbe.2014.11.331

[20]

Yoeri E. Boink, Markus Haltmeier, Sean Holman, Johannes Schwab. Data-consistent neural networks for solving nonlinear inverse problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022037

 Impact Factor: 

Metrics

  • PDF downloads (113)
  • HTML views (98)
  • Cited by (0)

[Back to Top]