2011, 1(2): 211-224. doi: 10.3934/naco.2011.1.211

Active incipient fault detection in continuous time systems with multiple simultaneous faults

1. 

Department of Physics and Mathematics, Tennessee State University, Nashville, Tennessee, United States

2. 

Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States

Received  October 2010 Revised  January 2011 Published  June 2011

The problem of detecting small parameter variations in linear uncertain systems due to incipient faults, with the possibility of injecting an input signal to enhance detection, is considered. Most studies assume that there is only one fault developing. Recently an active approach for two or more simultaneous faults has been introduced for the discrete time case. In this paper we extend this approach to the continuous time case. A computational method for the construction of an input signal for achieving guaranteed detection with specified precision is presented. The method is an extension of a multi-model approach used for the construction of auxiliary signals for failure detection, however, new technical issues must be addressed.
Citation: Martene L. Fair, Stephen L. Campbell. Active incipient fault detection in continuous time systems with multiple simultaneous faults. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 211-224. doi: 10.3934/naco.2011.1.211
References:
[1]

S. L. Campbell and C. D. Meyer Jr., "Generalized Inverses of Linear Transformations," SIAM Publishers, Philadelphia, PA, 2008.

[2]

S. L. Campbell and R. Nikoukhah, "Auxiliary signal design for failure detection," Princeton University Press, Princeton, 2004.

[3]

D. Choe, S. L Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches for robust failure detection, IEEE Conference on Control Applications, Toronto, 2005.

[4]

S. L. Campbell, J. P. Chanclier and R. Nikoukhah, "Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4," Second Edition, Springer, New York, 2010. doi: 10.1007/978-1-4419-5527-2.

[5]

D. Choe, S. L. Campbell and R. Nikoukhah, Optimal piecewise-constant signal design for active fault detection, International Journal of Control, 82 (2009), 130-146. doi: 10.1080/00207170801993587.

[6]

K. J. Drake, S. L. Campbell, I. Andjelkovic and K. Sweetingham, Active incipient failure detection: a nonlinear case study, Proc 4th International Conference on Computing, Communications and Control Technologies: CCCT '06, Orlando, 2006.

[7]

M. Y. Chow., "Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection," World Scientific Publishing Company, 1997. doi: 10.1142/9789812819383.

[8]

M. A. Demetriou and M. M. Polycarpou, Incipient fault diagnosis of dynamical systems using on-line approximators, IEEE Trans. Automatic Control, 43 (1998), 1612-1617. doi: 10.1109/9.728881.

[9]

M. Fair and S. L. Campbell, Active incipient fault detection with two simultaneous faults, Proc. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (Safeprocess 2009), Barcelona.

[10]

M. Fair and S. L. Campbell, Active incipient fault detection with more than two simultaneous faults, Proc. IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, 2009.

[11]

P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part I - methodology, IEEE Trans. Industrial Electronics, 42 (1995), 131-138. doi: 10.1109/41.370378.

[12]

P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part II - application, IEEE Trans. Industrial Electronics, 42 (1995), 139-146. doi: 10.1109/41.370379.

[13]

R. Isermann, "Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance," Springer, Berlin, 2006.

[14]

B. Jiang, M. Staroswiecki and V. Cocquempot, Active fault tolerant control for a class of nonlinear systems, Proc. Safeprocess 2003, Washington, DC, 127-132.

[15]

F. Kerestecioglu and M. B. Zarrop, Input design for detection of abrupt changes in dynamical systems, International Journal of Control, 59 (1994), 1063-1084. doi: 10.1080/00207179408923118.

[16]

F. L. Lewis and V. L. Syrmos, "Optimal Control, Second Edition," Wiley, New York, 1995.

[17]

H. H. Niemann, A setup for active fault diagnosis, IEEE Transactions on Automatic Control, 51 (2006), 1572-1578. doi: 10.1109/TAC.2006.878724.

[18]

H. H. Niemann, Active fault diagnosis in closed-loop uncertain systems, 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, SAFEPROCESS'2006, Beijing, China, 2006.

[19]

R. Nikoukhah and S. L. Campbell, Robust detection of incipient faults: an active approach, Proc. IEEE Med. Conf. Control and Automation, 2006.

[20]

R. Nikoukhah and S. L. Campbell, Auxiliary signal design for active failure detection in uncertain linear systems with a priori information, Automatica, 42 (2006), 219-228. doi: 10.1016/j.automatica.2005.09.011.

[21]

R. Nikoukhah and S. L. Campbell, On the detection of small parameter variations in linear uncertain systems, European J. Control, 14 (2008), 158-171. doi: 10.3166/ejc.14.158-171.

[22]

R. Nikoukhah, S. L. Campbell and K. J. Drake, An active approach for detection of incipient faults, International Journal Systems Science, 41 (2010), 241-257. doi: 10.1080/00207720903045817.

[23]

I. R. Petersen and D. C. McFarlane, A methodology for process fault detection, Proc. IEEE Conference Decision and Control, Phoenix, AZ, (1999), 4984-4989.

[24]

A. V. Savkin and I. R. Petersen, A new approach to model validation and fault diagnosis, J. Optimization Theory and Application, 94 (1997), 241-250. doi: 10.1023/A:1022676106903.

[25]

M. Simandl, I. Puncochar and J. Kralovec, Rolling horizon for active fault detection, Proc. of IEEE Conf. on Decision and Control and European Control Conf., Seville, Spain, 2005, 3789-3794. doi: 10.1109/CDC.2005.1582752.

[26]

M. Simandl and I. Puncochar, Unified solution of optimal active fault detection and optimal control, Proc. 2007 American Control Conference, New York, USA, 3222-3227. doi: 10.1109/ACC.2007.4282446.

show all references

References:
[1]

S. L. Campbell and C. D. Meyer Jr., "Generalized Inverses of Linear Transformations," SIAM Publishers, Philadelphia, PA, 2008.

[2]

S. L. Campbell and R. Nikoukhah, "Auxiliary signal design for failure detection," Princeton University Press, Princeton, 2004.

[3]

D. Choe, S. L Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches for robust failure detection, IEEE Conference on Control Applications, Toronto, 2005.

[4]

S. L. Campbell, J. P. Chanclier and R. Nikoukhah, "Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4," Second Edition, Springer, New York, 2010. doi: 10.1007/978-1-4419-5527-2.

[5]

D. Choe, S. L. Campbell and R. Nikoukhah, Optimal piecewise-constant signal design for active fault detection, International Journal of Control, 82 (2009), 130-146. doi: 10.1080/00207170801993587.

[6]

K. J. Drake, S. L. Campbell, I. Andjelkovic and K. Sweetingham, Active incipient failure detection: a nonlinear case study, Proc 4th International Conference on Computing, Communications and Control Technologies: CCCT '06, Orlando, 2006.

[7]

M. Y. Chow., "Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection," World Scientific Publishing Company, 1997. doi: 10.1142/9789812819383.

[8]

M. A. Demetriou and M. M. Polycarpou, Incipient fault diagnosis of dynamical systems using on-line approximators, IEEE Trans. Automatic Control, 43 (1998), 1612-1617. doi: 10.1109/9.728881.

[9]

M. Fair and S. L. Campbell, Active incipient fault detection with two simultaneous faults, Proc. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (Safeprocess 2009), Barcelona.

[10]

M. Fair and S. L. Campbell, Active incipient fault detection with more than two simultaneous faults, Proc. IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, 2009.

[11]

P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part I - methodology, IEEE Trans. Industrial Electronics, 42 (1995), 131-138. doi: 10.1109/41.370378.

[12]

P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part II - application, IEEE Trans. Industrial Electronics, 42 (1995), 139-146. doi: 10.1109/41.370379.

[13]

R. Isermann, "Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance," Springer, Berlin, 2006.

[14]

B. Jiang, M. Staroswiecki and V. Cocquempot, Active fault tolerant control for a class of nonlinear systems, Proc. Safeprocess 2003, Washington, DC, 127-132.

[15]

F. Kerestecioglu and M. B. Zarrop, Input design for detection of abrupt changes in dynamical systems, International Journal of Control, 59 (1994), 1063-1084. doi: 10.1080/00207179408923118.

[16]

F. L. Lewis and V. L. Syrmos, "Optimal Control, Second Edition," Wiley, New York, 1995.

[17]

H. H. Niemann, A setup for active fault diagnosis, IEEE Transactions on Automatic Control, 51 (2006), 1572-1578. doi: 10.1109/TAC.2006.878724.

[18]

H. H. Niemann, Active fault diagnosis in closed-loop uncertain systems, 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, SAFEPROCESS'2006, Beijing, China, 2006.

[19]

R. Nikoukhah and S. L. Campbell, Robust detection of incipient faults: an active approach, Proc. IEEE Med. Conf. Control and Automation, 2006.

[20]

R. Nikoukhah and S. L. Campbell, Auxiliary signal design for active failure detection in uncertain linear systems with a priori information, Automatica, 42 (2006), 219-228. doi: 10.1016/j.automatica.2005.09.011.

[21]

R. Nikoukhah and S. L. Campbell, On the detection of small parameter variations in linear uncertain systems, European J. Control, 14 (2008), 158-171. doi: 10.3166/ejc.14.158-171.

[22]

R. Nikoukhah, S. L. Campbell and K. J. Drake, An active approach for detection of incipient faults, International Journal Systems Science, 41 (2010), 241-257. doi: 10.1080/00207720903045817.

[23]

I. R. Petersen and D. C. McFarlane, A methodology for process fault detection, Proc. IEEE Conference Decision and Control, Phoenix, AZ, (1999), 4984-4989.

[24]

A. V. Savkin and I. R. Petersen, A new approach to model validation and fault diagnosis, J. Optimization Theory and Application, 94 (1997), 241-250. doi: 10.1023/A:1022676106903.

[25]

M. Simandl, I. Puncochar and J. Kralovec, Rolling horizon for active fault detection, Proc. of IEEE Conf. on Decision and Control and European Control Conf., Seville, Spain, 2005, 3789-3794. doi: 10.1109/CDC.2005.1582752.

[26]

M. Simandl and I. Puncochar, Unified solution of optimal active fault detection and optimal control, Proc. 2007 American Control Conference, New York, USA, 3222-3227. doi: 10.1109/ACC.2007.4282446.

[1]

Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125

[2]

David L. Russell. Coefficient identification and fault detection in linear elastic systems; one dimensional problems. Mathematical Control and Related Fields, 2011, 1 (3) : 391-411. doi: 10.3934/mcrf.2011.1.391

[3]

Nana Xu, Jun Sun, Jingjing Liu, Xianchao Xiu. A novel scheme for multivariate statistical fault detection with application to the Tennessee Eastman process. Mathematical Foundations of Computing, 2021, 4 (3) : 167-184. doi: 10.3934/mfc.2021010

[4]

Qi Li, Hong Xue, Changxin Lu. Event-based fault detection for interval type-2 fuzzy systems with measurement outliers. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1301-1328. doi: 10.3934/dcdss.2020412

[5]

Qian Zhang, Huaicheng Yan, Jun Cheng, Xisheng Zhan, Kaibo Shi. Fault detection filtering for continuous-time singular systems under a dynamic event-triggered mechanism. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022023

[6]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[7]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[8]

Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i

[9]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[10]

Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks and Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018

[11]

Abdon Atangana, José Francisco Gómez-Aguilar, Jordan Y. Hristov, Kolade M. Owolabi. Preface on "New trends of numerical and analytical methods". Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : i-ii. doi: 10.3934/dcdss.20203i

[12]

Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241

[13]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[14]

Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012

[15]

Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155

[16]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[17]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic and Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[18]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic and Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[19]

Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb. Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6 (2) : 171-198. doi: 10.3934/jcd.2019009

[20]

Caojin Zhang, George Yin, Qing Zhang, Le Yi Wang. Pollution control for switching diffusion models: Approximation methods and numerical results. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3667-3687. doi: 10.3934/dcdsb.2018310

 Impact Factor: 

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]