-
Previous Article
A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction
- NACO Home
- This Issue
- Next Article
Active incipient fault detection in continuous time systems with multiple simultaneous faults
1. | Department of Physics and Mathematics, Tennessee State University, Nashville, Tennessee, United States |
2. | Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States |
References:
[1] |
S. L. Campbell and C. D. Meyer Jr., "Generalized Inverses of Linear Transformations," SIAM Publishers, Philadelphia, PA, 2008. |
[2] |
S. L. Campbell and R. Nikoukhah, "Auxiliary signal design for failure detection," Princeton University Press, Princeton, 2004. |
[3] |
D. Choe, S. L Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches for robust failure detection, IEEE Conference on Control Applications, Toronto, 2005. |
[4] |
S. L. Campbell, J. P. Chanclier and R. Nikoukhah, "Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4," Second Edition, Springer, New York, 2010.
doi: 10.1007/978-1-4419-5527-2. |
[5] |
D. Choe, S. L. Campbell and R. Nikoukhah, Optimal piecewise-constant signal design for active fault detection, International Journal of Control, 82 (2009), 130-146.
doi: 10.1080/00207170801993587. |
[6] |
K. J. Drake, S. L. Campbell, I. Andjelkovic and K. Sweetingham, Active incipient failure detection: a nonlinear case study, Proc 4th International Conference on Computing, Communications and Control Technologies: CCCT '06, Orlando, 2006. |
[7] |
M. Y. Chow., "Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection," World Scientific Publishing Company, 1997.
doi: 10.1142/9789812819383. |
[8] |
M. A. Demetriou and M. M. Polycarpou, Incipient fault diagnosis of dynamical systems using on-line approximators, IEEE Trans. Automatic Control, 43 (1998), 1612-1617.
doi: 10.1109/9.728881. |
[9] |
M. Fair and S. L. Campbell, Active incipient fault detection with two simultaneous faults, Proc. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (Safeprocess 2009), Barcelona. |
[10] |
M. Fair and S. L. Campbell, Active incipient fault detection with more than two simultaneous faults, Proc. IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, 2009. |
[11] |
P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part I - methodology, IEEE Trans. Industrial Electronics, 42 (1995), 131-138.
doi: 10.1109/41.370378. |
[12] |
P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part II - application, IEEE Trans. Industrial Electronics, 42 (1995), 139-146.
doi: 10.1109/41.370379. |
[13] |
R. Isermann, "Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance," Springer, Berlin, 2006. |
[14] |
B. Jiang, M. Staroswiecki and V. Cocquempot, Active fault tolerant control for a class of nonlinear systems, Proc. Safeprocess 2003, Washington, DC, 127-132. |
[15] |
F. Kerestecioglu and M. B. Zarrop, Input design for detection of abrupt changes in dynamical systems, International Journal of Control, 59 (1994), 1063-1084.
doi: 10.1080/00207179408923118. |
[16] |
F. L. Lewis and V. L. Syrmos, "Optimal Control, Second Edition," Wiley, New York, 1995. |
[17] |
H. H. Niemann, A setup for active fault diagnosis, IEEE Transactions on Automatic Control, 51 (2006), 1572-1578.
doi: 10.1109/TAC.2006.878724. |
[18] |
H. H. Niemann, Active fault diagnosis in closed-loop uncertain systems, 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, SAFEPROCESS'2006, Beijing, China, 2006. |
[19] |
R. Nikoukhah and S. L. Campbell, Robust detection of incipient faults: an active approach, Proc. IEEE Med. Conf. Control and Automation, 2006. |
[20] |
R. Nikoukhah and S. L. Campbell, Auxiliary signal design for active failure detection in uncertain linear systems with a priori information, Automatica, 42 (2006), 219-228.
doi: 10.1016/j.automatica.2005.09.011. |
[21] |
R. Nikoukhah and S. L. Campbell, On the detection of small parameter variations in linear uncertain systems, European J. Control, 14 (2008), 158-171.
doi: 10.3166/ejc.14.158-171. |
[22] |
R. Nikoukhah, S. L. Campbell and K. J. Drake, An active approach for detection of incipient faults, International Journal Systems Science, 41 (2010), 241-257.
doi: 10.1080/00207720903045817. |
[23] |
I. R. Petersen and D. C. McFarlane, A methodology for process fault detection, Proc. IEEE Conference Decision and Control, Phoenix, AZ, (1999), 4984-4989. |
[24] |
A. V. Savkin and I. R. Petersen, A new approach to model validation and fault diagnosis, J. Optimization Theory and Application, 94 (1997), 241-250.
doi: 10.1023/A:1022676106903. |
[25] |
M. Simandl, I. Puncochar and J. Kralovec, Rolling horizon for active fault detection, Proc. of IEEE Conf. on Decision and Control and European Control Conf., Seville, Spain, 2005, 3789-3794.
doi: 10.1109/CDC.2005.1582752. |
[26] |
M. Simandl and I. Puncochar, Unified solution of optimal active fault detection and optimal control, Proc. 2007 American Control Conference, New York, USA, 3222-3227.
doi: 10.1109/ACC.2007.4282446. |
show all references
References:
[1] |
S. L. Campbell and C. D. Meyer Jr., "Generalized Inverses of Linear Transformations," SIAM Publishers, Philadelphia, PA, 2008. |
[2] |
S. L. Campbell and R. Nikoukhah, "Auxiliary signal design for failure detection," Princeton University Press, Princeton, 2004. |
[3] |
D. Choe, S. L Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches for robust failure detection, IEEE Conference on Control Applications, Toronto, 2005. |
[4] |
S. L. Campbell, J. P. Chanclier and R. Nikoukhah, "Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4," Second Edition, Springer, New York, 2010.
doi: 10.1007/978-1-4419-5527-2. |
[5] |
D. Choe, S. L. Campbell and R. Nikoukhah, Optimal piecewise-constant signal design for active fault detection, International Journal of Control, 82 (2009), 130-146.
doi: 10.1080/00207170801993587. |
[6] |
K. J. Drake, S. L. Campbell, I. Andjelkovic and K. Sweetingham, Active incipient failure detection: a nonlinear case study, Proc 4th International Conference on Computing, Communications and Control Technologies: CCCT '06, Orlando, 2006. |
[7] |
M. Y. Chow., "Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection," World Scientific Publishing Company, 1997.
doi: 10.1142/9789812819383. |
[8] |
M. A. Demetriou and M. M. Polycarpou, Incipient fault diagnosis of dynamical systems using on-line approximators, IEEE Trans. Automatic Control, 43 (1998), 1612-1617.
doi: 10.1109/9.728881. |
[9] |
M. Fair and S. L. Campbell, Active incipient fault detection with two simultaneous faults, Proc. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (Safeprocess 2009), Barcelona. |
[10] |
M. Fair and S. L. Campbell, Active incipient fault detection with more than two simultaneous faults, Proc. IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, 2009. |
[11] |
P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part I - methodology, IEEE Trans. Industrial Electronics, 42 (1995), 131-138.
doi: 10.1109/41.370378. |
[12] |
P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part II - application, IEEE Trans. Industrial Electronics, 42 (1995), 139-146.
doi: 10.1109/41.370379. |
[13] |
R. Isermann, "Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance," Springer, Berlin, 2006. |
[14] |
B. Jiang, M. Staroswiecki and V. Cocquempot, Active fault tolerant control for a class of nonlinear systems, Proc. Safeprocess 2003, Washington, DC, 127-132. |
[15] |
F. Kerestecioglu and M. B. Zarrop, Input design for detection of abrupt changes in dynamical systems, International Journal of Control, 59 (1994), 1063-1084.
doi: 10.1080/00207179408923118. |
[16] |
F. L. Lewis and V. L. Syrmos, "Optimal Control, Second Edition," Wiley, New York, 1995. |
[17] |
H. H. Niemann, A setup for active fault diagnosis, IEEE Transactions on Automatic Control, 51 (2006), 1572-1578.
doi: 10.1109/TAC.2006.878724. |
[18] |
H. H. Niemann, Active fault diagnosis in closed-loop uncertain systems, 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, SAFEPROCESS'2006, Beijing, China, 2006. |
[19] |
R. Nikoukhah and S. L. Campbell, Robust detection of incipient faults: an active approach, Proc. IEEE Med. Conf. Control and Automation, 2006. |
[20] |
R. Nikoukhah and S. L. Campbell, Auxiliary signal design for active failure detection in uncertain linear systems with a priori information, Automatica, 42 (2006), 219-228.
doi: 10.1016/j.automatica.2005.09.011. |
[21] |
R. Nikoukhah and S. L. Campbell, On the detection of small parameter variations in linear uncertain systems, European J. Control, 14 (2008), 158-171.
doi: 10.3166/ejc.14.158-171. |
[22] |
R. Nikoukhah, S. L. Campbell and K. J. Drake, An active approach for detection of incipient faults, International Journal Systems Science, 41 (2010), 241-257.
doi: 10.1080/00207720903045817. |
[23] |
I. R. Petersen and D. C. McFarlane, A methodology for process fault detection, Proc. IEEE Conference Decision and Control, Phoenix, AZ, (1999), 4984-4989. |
[24] |
A. V. Savkin and I. R. Petersen, A new approach to model validation and fault diagnosis, J. Optimization Theory and Application, 94 (1997), 241-250.
doi: 10.1023/A:1022676106903. |
[25] |
M. Simandl, I. Puncochar and J. Kralovec, Rolling horizon for active fault detection, Proc. of IEEE Conf. on Decision and Control and European Control Conf., Seville, Spain, 2005, 3789-3794.
doi: 10.1109/CDC.2005.1582752. |
[26] |
M. Simandl and I. Puncochar, Unified solution of optimal active fault detection and optimal control, Proc. 2007 American Control Conference, New York, USA, 3222-3227.
doi: 10.1109/ACC.2007.4282446. |
[1] |
Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125 |
[2] |
David L. Russell. Coefficient identification and fault detection in linear elastic systems; one dimensional problems. Mathematical Control and Related Fields, 2011, 1 (3) : 391-411. doi: 10.3934/mcrf.2011.1.391 |
[3] |
Nana Xu, Jun Sun, Jingjing Liu, Xianchao Xiu. A novel scheme for multivariate statistical fault detection with application to the Tennessee Eastman process. Mathematical Foundations of Computing, 2021, 4 (3) : 167-184. doi: 10.3934/mfc.2021010 |
[4] |
Qi Li, Hong Xue, Changxin Lu. Event-based fault detection for interval type-2 fuzzy systems with measurement outliers. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1301-1328. doi: 10.3934/dcdss.2020412 |
[5] |
Qian Zhang, Huaicheng Yan, Jun Cheng, Xisheng Zhan, Kaibo Shi. Fault detection filtering for continuous-time singular systems under a dynamic event-triggered mechanism. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022023 |
[6] |
Emmanuel Frénod. Homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i |
[7] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[8] |
Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i |
[9] |
Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220 |
[10] |
Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks and Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018 |
[11] |
Abdon Atangana, José Francisco Gómez-Aguilar, Jordan Y. Hristov, Kolade M. Owolabi. Preface on "New trends of numerical and analytical methods". Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : i-ii. doi: 10.3934/dcdss.20203i |
[12] |
Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241 |
[13] |
Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289 |
[14] |
Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012 |
[15] |
Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155 |
[16] |
Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092 |
[17] |
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic and Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001 |
[18] |
Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic and Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004 |
[19] |
Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb. Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6 (2) : 171-198. doi: 10.3934/jcd.2019009 |
[20] |
Caojin Zhang, George Yin, Qing Zhang, Le Yi Wang. Pollution control for switching diffusion models: Approximation methods and numerical results. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3667-3687. doi: 10.3934/dcdsb.2018310 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]