-
Previous Article
Proximal point nonlinear rescaling method for convex optimization
- NACO Home
- This Issue
-
Next Article
Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces
An optimal impulsive control regulator for linear systems
1. | Department of Physical and Mathematical Science, Autonomous University of Nuevo Leon, Apdo postal 144-F, C.P. 66450, San Nicolas de los Garza, Nuevo Leon |
2. | Department of Physical and Mathematical Sciences, Autonomous University of Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, Mexico |
References:
[1] |
A. Arutyunov, V. Jacimovic and F. Pereira, Second order necessary conditions of optimality for impulsive control systems, Proc. 41st IEEE Conference on Decision and Control, (2002), 1576-1581.
doi: doi:10.1109/CDC.2002.1184744. |
[2] |
A. V. Arutyunov, D. Yu. Karamzin and F. Pereira, Pontryagin's Maximum Principle for Optimal Impulsive Control Problems, Doklady Mathematics, 81 (2010), 418-421.
doi: doi:10.1134/S1064562410030221. |
[3] |
A. V. Arutyunov, D. Yu. Karamzin and F. L. Pereira, On constrained impulsive control problems, J. Mathematical Sciences, 165 (2010), 654-688.
doi: doi:10.1007/s10958-010-9834-z. |
[4] |
M. V. Basin and M. A. Pinsky, On impulse and continuous observation control design in Kalman filtering problem, Systems and Control Letters, 36 (1999), 213-219.
doi: doi:10.1016/S0167-6911(98)00094-2. |
[5] |
A. Blaquiere, Impulsive optimal control with finite or infinite time horizon, J. Optimization Theory and Applications, 46 (1985), 431-439.
doi: doi:10.1007/BF00939148. |
[6] |
A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Kluwer, 1988. |
[7] |
T. F. Filippova, State estimation problem for impulsive control systems, Proc. 1oth Mediterranean Conference on Automation and Control, Lisbon, Portugal, 2002. |
[8] |
W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Springer, 1975. |
[9] |
H. Kwakernaak and R. Sivan, "Linear Optimal Control Systems," Wiley-Interscience, New York, 1972. |
[10] |
Z. G. Li, C. Y. Wen and Y. C. Soh, Analysis and design of impulsive control systems, IEEE Trans. Automatic Control, 46 (2001), 894-897.
doi: doi:10.1109/9.928590. |
[11] |
X. Liu, Stability of impulsive control systems with time delay, Math. Computer Modelling, 39 (2004), 511-519.
doi: doi:10.1016/S0895-7177(04)90522-5. |
[12] |
X. Liu and K. L. Teo, Impulsive control of chaotic system, Intern. J. Bifurcation and Chaos, 12 (2002), 1181-1190. |
[13] |
Y. Liu, K. L. Teo, L. S. Jennigns and S. Wang, On a class of optimal control problems with state jumps, J. Optimization Theory and Applications, 98 (1998), 65-82.
doi: doi:10.1023/A:1022684730236. |
[14] |
G. N. Silva and R. B. Vinter, Necessary conditions for optimal impulsive control problems, Proc. 36th IEEE Conference on Decision and Control, (1997), 2085-2090.
doi: doi:10.1109/CDC.1997.657074. |
[15] |
R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures, SIAM J. Control, 3 (1965), 191-205. |
[16] |
J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972. |
show all references
References:
[1] |
A. Arutyunov, V. Jacimovic and F. Pereira, Second order necessary conditions of optimality for impulsive control systems, Proc. 41st IEEE Conference on Decision and Control, (2002), 1576-1581.
doi: doi:10.1109/CDC.2002.1184744. |
[2] |
A. V. Arutyunov, D. Yu. Karamzin and F. Pereira, Pontryagin's Maximum Principle for Optimal Impulsive Control Problems, Doklady Mathematics, 81 (2010), 418-421.
doi: doi:10.1134/S1064562410030221. |
[3] |
A. V. Arutyunov, D. Yu. Karamzin and F. L. Pereira, On constrained impulsive control problems, J. Mathematical Sciences, 165 (2010), 654-688.
doi: doi:10.1007/s10958-010-9834-z. |
[4] |
M. V. Basin and M. A. Pinsky, On impulse and continuous observation control design in Kalman filtering problem, Systems and Control Letters, 36 (1999), 213-219.
doi: doi:10.1016/S0167-6911(98)00094-2. |
[5] |
A. Blaquiere, Impulsive optimal control with finite or infinite time horizon, J. Optimization Theory and Applications, 46 (1985), 431-439.
doi: doi:10.1007/BF00939148. |
[6] |
A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Kluwer, 1988. |
[7] |
T. F. Filippova, State estimation problem for impulsive control systems, Proc. 1oth Mediterranean Conference on Automation and Control, Lisbon, Portugal, 2002. |
[8] |
W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Springer, 1975. |
[9] |
H. Kwakernaak and R. Sivan, "Linear Optimal Control Systems," Wiley-Interscience, New York, 1972. |
[10] |
Z. G. Li, C. Y. Wen and Y. C. Soh, Analysis and design of impulsive control systems, IEEE Trans. Automatic Control, 46 (2001), 894-897.
doi: doi:10.1109/9.928590. |
[11] |
X. Liu, Stability of impulsive control systems with time delay, Math. Computer Modelling, 39 (2004), 511-519.
doi: doi:10.1016/S0895-7177(04)90522-5. |
[12] |
X. Liu and K. L. Teo, Impulsive control of chaotic system, Intern. J. Bifurcation and Chaos, 12 (2002), 1181-1190. |
[13] |
Y. Liu, K. L. Teo, L. S. Jennigns and S. Wang, On a class of optimal control problems with state jumps, J. Optimization Theory and Applications, 98 (1998), 65-82.
doi: doi:10.1023/A:1022684730236. |
[14] |
G. N. Silva and R. B. Vinter, Necessary conditions for optimal impulsive control problems, Proc. 36th IEEE Conference on Decision and Control, (1997), 2085-2090.
doi: doi:10.1109/CDC.1997.657074. |
[15] |
R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures, SIAM J. Control, 3 (1965), 191-205. |
[16] |
J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972. |
[1] |
C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial and Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435 |
[2] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[3] |
Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181 |
[4] |
Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764 |
[5] |
Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Linear optimal control of time delay systems via Hermite wavelet. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 143-156. doi: 10.3934/naco.2019044 |
[6] |
Ying Hu, Shanjian Tang. Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 1-. doi: 10.1186/s41546-018-0035-x |
[7] |
Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1 |
[8] |
Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial and Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591 |
[9] |
Honglei Xu, Kok Lay Teo, Weihua Gui. Necessary and sufficient conditions for stability of impulsive switched linear systems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1185-1195. doi: 10.3934/dcdsb.2011.16.1185 |
[10] |
Elena K. Kostousova. State estimation for linear impulsive differential systems through polyhedral techniques. Conference Publications, 2009, 2009 (Special) : 466-475. doi: 10.3934/proc.2009.2009.466 |
[11] |
Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164 |
[12] |
Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial and Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1 |
[13] |
Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034 |
[14] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[15] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[16] |
Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014 |
[17] |
Jingang Zhao, Chi Zhang. Finite-horizon optimal control of discrete-time linear systems with completely unknown dynamics using Q-learning. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1471-1483. doi: 10.3934/jimo.2020030 |
[18] |
Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369 |
[19] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[20] |
Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 413-435. doi: 10.3934/naco.2012.2.413 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]