-
Previous Article
An improved targeted climbing algorithm for linear programs
- NACO Home
- This Issue
-
Next Article
Some results on $l^k$-eigenvalues of tensor and related spectral radius
Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability
1. | Faculty of Mathematics and Computer Science, University of Łódź, ul. S. Banacha 22, 90-338 Łódź, Poland |
References:
[1] |
D. Greenhalgh and S. Marshall, Convergence criteria for genetic algorithms, SIAM J. Comput., 30 (2000), 269-282.
doi: 10.1137/S009753979732565X. |
[2] |
G. J. Koehler, S. Bhattacharya and M. D. Vose, General cardinality genetic algorithms, Evol. Comput., 5 (1998), 439-459.
doi: 10.1162/evco.1997.5.4.439. |
[3] |
C. R. Reeves and J. E. Rowe, "Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory," Kluwer, Boston, 2003. |
[4] |
G. Rudolph and A. Agapie, Convergence properties of some multi-objective evolutionary algorithms, in: "Proceedings of the 2000 Congress on Evolutionary Computation: CEC00" (eds. A. Zalzala et al.), Vol. 2, IEEE Press, Piscataway (NJ), (2000), 1010-1016.
doi: 10.1109/CEC.2000.870756. |
[5] |
J. E. Rowe, M. D. Vose and A. H. Wright, Structural search spaces and genetic operators, Evol. Comput., 12 (2004), 461-493.
doi: 10.1162/1063656043138941. |
[6] |
M. Studniarski, Stopping criteria for a general model of genetic algorithm, in: "Twelfth National Conference on Evolutionary Computation and Global Optimization" (ed. J. Arabas), Zawoja, Poland, (2009), 173-181. |
[7] |
M. Studniarski, Stopping criteria for genetic algorithms with application to multiobjective optimization, in "Parallel Problem Solving from Nature -- PPSN XI" (eds. R. Schaefer et al.), Part I, Lect. Notes Comput. Sc. 6238, (2010), 697-706.
doi: 10.1007/978-3-642-15844-5_70. |
[8] |
M. D. Vose, "The Simple Genetic Algorithm: Foundations and Theory," MIT Press, Cambridge, Massachusetts, 1999. |
show all references
References:
[1] |
D. Greenhalgh and S. Marshall, Convergence criteria for genetic algorithms, SIAM J. Comput., 30 (2000), 269-282.
doi: 10.1137/S009753979732565X. |
[2] |
G. J. Koehler, S. Bhattacharya and M. D. Vose, General cardinality genetic algorithms, Evol. Comput., 5 (1998), 439-459.
doi: 10.1162/evco.1997.5.4.439. |
[3] |
C. R. Reeves and J. E. Rowe, "Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory," Kluwer, Boston, 2003. |
[4] |
G. Rudolph and A. Agapie, Convergence properties of some multi-objective evolutionary algorithms, in: "Proceedings of the 2000 Congress on Evolutionary Computation: CEC00" (eds. A. Zalzala et al.), Vol. 2, IEEE Press, Piscataway (NJ), (2000), 1010-1016.
doi: 10.1109/CEC.2000.870756. |
[5] |
J. E. Rowe, M. D. Vose and A. H. Wright, Structural search spaces and genetic operators, Evol. Comput., 12 (2004), 461-493.
doi: 10.1162/1063656043138941. |
[6] |
M. Studniarski, Stopping criteria for a general model of genetic algorithm, in: "Twelfth National Conference on Evolutionary Computation and Global Optimization" (ed. J. Arabas), Zawoja, Poland, (2009), 173-181. |
[7] |
M. Studniarski, Stopping criteria for genetic algorithms with application to multiobjective optimization, in "Parallel Problem Solving from Nature -- PPSN XI" (eds. R. Schaefer et al.), Part I, Lect. Notes Comput. Sc. 6238, (2010), 697-706.
doi: 10.1007/978-3-642-15844-5_70. |
[8] |
M. D. Vose, "The Simple Genetic Algorithm: Foundations and Theory," MIT Press, Cambridge, Massachusetts, 1999. |
[1] |
Ping-Chen Lin. Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm. Journal of Industrial and Management Optimization, 2012, 8 (3) : 549-564. doi: 10.3934/jimo.2012.8.549 |
[2] |
Qiang Long, Changzhi Wu. A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1279-1296. doi: 10.3934/jimo.2014.10.1279 |
[3] |
Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1203-1220. doi: 10.3934/jimo.2018200 |
[4] |
Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061 |
[5] |
Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257 |
[6] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[7] |
Yaw Chang, Lin Chen. Solve the vehicle routing problem with time windows via a genetic algorithm. Conference Publications, 2007, 2007 (Special) : 240-249. doi: 10.3934/proc.2007.2007.240 |
[8] |
Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391 |
[9] |
Abdel-Rahman Hedar, Alaa Fahim. Filter-based genetic algorithm for mixed variable programming. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 99-116. doi: 10.3934/naco.2011.1.99 |
[10] |
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044 |
[11] |
Jingwen Zhang, Wanjun Liu, Wanlin Liu. An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers. Journal of Industrial and Management Optimization, 2022, 18 (1) : 1-24. doi: 10.3934/jimo.2020140 |
[12] |
Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1 (2) : 275-294. doi: 10.3934/nhm.2006.1.275 |
[13] |
Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012 |
[14] |
Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control and Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007 |
[15] |
Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529 |
[16] |
Abdel-Rahman Hedar, Ahmed Fouad Ali, Taysir Hassan Abdel-Hamid. Genetic algorithm and Tabu search based methods for molecular 3D-structure prediction. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 191-209. doi: 10.3934/naco.2011.1.191 |
[17] |
Xuewen Huang, Xiaotong Zhang, Sardar M. N. Islam, Carlos A. Vega-Mejía. An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2943-2969. doi: 10.3934/jimo.2019088 |
[18] |
Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial and Management Optimization, 2017, 13 (2) : 549-572. doi: 10.3934/jimo.2016031 |
[19] |
Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483 |
[20] |
Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial and Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]