2011, 1(3): 407-415. doi: 10.3934/naco.2011.1.407

On linear vector optimization duality in infinite-dimensional spaces

1. 

Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, Germany

Received  April 2011 Revised  July 2011 Published  September 2011

In this paper we extend to infinite-dimensional spaces a vector duality concept recently considered in the literature in connection to the classical vector minimization linear optimization problem in a finite-dimensional framework. Weak, strong and converse duality for the vector dual problem introduced with this respect are proven and we also investigate its connections to some classical vector duals considered in the same framework in the literature.
Citation: Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407
References:
[1]

R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited,, Optimization Letters, ().  doi: 10.1007/s11590-010-0263-1.

[2]

R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization," Springer-Verlag, Berlin-Heidelberg, 2009.

[3]

R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I), Optimization, 53 (2004), 281-300. doi: 10.1080/02331930410001715514.

[4]

A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization, Journal of Optimization Theory and Applications, 82 (1994), 1-21. doi: 10.1007/BF02191776.

[5]

A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization, Journal of Convex Analysis, 11 (2004), 163-178.

[6]

J. Jahn, Duality in vector optimization, Mathematical Programming, 25 (1983), 343-353. doi: 10.1007/BF02594784.

[7]

J. Jahn, "Vector Optimization - Theory, Applications, and Extensions," Springer-Verlag, Berlin, 2004.

[8]

R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1970.

[9]

C. Zălinescu, "Convex Analysis in General Vector Spaces," World Scientific, Singapore, 2002.

[10]

C. Zălinescu, Stability for a class of nonlinear optimization problems and applications, in "Nonsmooth Optimization and Related Topics (Erice 1988), " Plenum, New York, (1988), 437-458.

show all references

References:
[1]

R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited,, Optimization Letters, ().  doi: 10.1007/s11590-010-0263-1.

[2]

R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization," Springer-Verlag, Berlin-Heidelberg, 2009.

[3]

R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I), Optimization, 53 (2004), 281-300. doi: 10.1080/02331930410001715514.

[4]

A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization, Journal of Optimization Theory and Applications, 82 (1994), 1-21. doi: 10.1007/BF02191776.

[5]

A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization, Journal of Convex Analysis, 11 (2004), 163-178.

[6]

J. Jahn, Duality in vector optimization, Mathematical Programming, 25 (1983), 343-353. doi: 10.1007/BF02594784.

[7]

J. Jahn, "Vector Optimization - Theory, Applications, and Extensions," Springer-Verlag, Berlin, 2004.

[8]

R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1970.

[9]

C. Zălinescu, "Convex Analysis in General Vector Spaces," World Scientific, Singapore, 2002.

[10]

C. Zălinescu, Stability for a class of nonlinear optimization problems and applications, in "Nonsmooth Optimization and Related Topics (Erice 1988), " Plenum, New York, (1988), 437-458.

[1]

Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial and Management Optimization, 2017, 13 (2) : 549-572. doi: 10.3934/jimo.2016031

[2]

Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial and Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523

[3]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial and Management Optimization, 2022, 18 (2) : 731-745. doi: 10.3934/jimo.2020176

[4]

Tran Ninh Hoa, Ta Duy Phuong, Nguyen Dong Yen. Linear fractional vector optimization problems with many components in the solution sets. Journal of Industrial and Management Optimization, 2005, 1 (4) : 477-486. doi: 10.3934/jimo.2005.1.477

[5]

Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial and Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611

[6]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[7]

Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial and Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

[8]

Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial and Management Optimization, 2020, 16 (2) : 707-724. doi: 10.3934/jimo.2018174

[9]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[10]

Chunrong Chen. A unified nonlinear augmented Lagrangian approach for nonconvex vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 495-508. doi: 10.3934/naco.2011.1.495

[11]

Kequan Zhao, Xinmin Yang. Characterizations of the $E$-Benson proper efficiency in vector optimization problems. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 643-653. doi: 10.3934/naco.2013.3.643

[12]

Marius Durea, Elena-Andreea Florea, Radu Strugariu. Henig proper efficiency in vector optimization with variable ordering structure. Journal of Industrial and Management Optimization, 2019, 15 (2) : 791-815. doi: 10.3934/jimo.2018071

[13]

Qilin Wang, S. J. Li. Higher-order sensitivity analysis in nonconvex vector optimization. Journal of Industrial and Management Optimization, 2010, 6 (2) : 381-392. doi: 10.3934/jimo.2010.6.381

[14]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial and Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

[15]

Giovanni P. Crespi, Ivan Ginchev, Matteo Rocca. Two approaches toward constrained vector optimization and identity of the solutions. Journal of Industrial and Management Optimization, 2005, 1 (4) : 549-563. doi: 10.3934/jimo.2005.1.549

[16]

Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141

[17]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[18]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[19]

Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 417-433. doi: 10.3934/naco.2011.1.417

[20]

Fengqiu Liu, Xiaoping Xue. Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels. Journal of Industrial and Management Optimization, 2016, 12 (1) : 285-301. doi: 10.3934/jimo.2016.12.285

 Impact Factor: 

Metrics

  • PDF downloads (176)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]