2011, 1(3): 549-561. doi: 10.3934/naco.2011.1.549

Bilevel mixed equilibrium problems in Banach spaces : existence and algorithmic aspects

1. 

Department of Economics, Ibn Zohr University, B.P. 8658 Poste Dakhla, Agadir, Morocco

2. 

Department of Mathematics, Ibn Zohr University, Agadir, Morocco

3. 

Kaohsiung Medical University, Kaohsiung Medical University, Kaohsiung 80708

Received  May 2011 Revised  August 2011 Published  September 2011

In this paper, we study the existence and algorithmic aspect of a class of bilevel mixed equilibrium problems (BMEP) in a Banach space setting. We introduce a suitable regularization of the bilevel mixed equilibrium problems by means of an auxiliary equilibrium problem. We show that it is possible to define from the auxiliary equilibrium problems a sequence strongly convergent to a solution of the bilevel mixed equilibrium problem. The results obtained are interesting in the sense that they improve some new results on bilevel mixed equilibrium problems and give answer to some open questions in literature related to the convergence of algorithms for (BMEP).
Citation: Ouayl Chadli, Hicham Mahdioui, Jen-Chih Yao. Bilevel mixed equilibrium problems in Banach spaces : existence and algorithmic aspects. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 549-561. doi: 10.3934/naco.2011.1.549
References:
[1]

A. S. Antipin, The fixed points of extremal maps: computation by gradient methods, Zh. Vychisl. Mat. Mat. Fiz., 37 (1997), 42-53.

[2]

C. Baiocchi and A. Capelo, "Variational and Quasivariational Inequalites: Applications to Free Boundary Problems," John Wiley and Sons, New York, 1984.

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student, 63 (1994), 123-145.

[4]

O. Chadli, Z. Chbani and H. Riahi, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities, J. Optim. Theory. Appl., 105 (2000), 299-323. doi: 10.1023/A:1004657817758.

[5]

G. Cohen, Auxiliary problem principle and decomposition of optimization problems, J. Optim. Theory. Appl., 32 (1980), 277-305. doi: 10.1007/BF00934554.

[6]

G. Cohen, Auxiliary problem principle extended to variational inequalities, J. Optim. Theory. Appl., 59 (1988), 325-333.

[7]

X. P. Ding, Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces, J. Optim. Theory. Appl., 146 (2010), 347-357. doi: 10.1007/s10957-010-9651-z.

[8]

K. Goebel and W. A. Kirk, "Topics in Metric Fixed Point Theory," Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990.

[9]

I. V. Konnov, Generalized monotone equilibrium problems and variational inequalities, in "Handbook of Generalized Convexity and Generalized Monotonicity " (eds. N. Hadjisavvas, S. Koml\'osi and S. Schaible), Springer-Verlag, (2005), 559-618.

[10]

A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems, J. Glob. Optim., 47 (2010), 287-292. doi: 10.1007/s10898-009-9476-1.

[11]

M. Patriksson, "Nonlinear Programming and Variational Inequality Problems: a unified approach," Kluwer, Dordrecht, 1999.

[12]

E. Zeidler, "Nonlinear Functional Analysis ans Its Applications II/B. Nonlinear Monotone Operators," Springer-Verlag, New York, 1990.

show all references

References:
[1]

A. S. Antipin, The fixed points of extremal maps: computation by gradient methods, Zh. Vychisl. Mat. Mat. Fiz., 37 (1997), 42-53.

[2]

C. Baiocchi and A. Capelo, "Variational and Quasivariational Inequalites: Applications to Free Boundary Problems," John Wiley and Sons, New York, 1984.

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student, 63 (1994), 123-145.

[4]

O. Chadli, Z. Chbani and H. Riahi, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities, J. Optim. Theory. Appl., 105 (2000), 299-323. doi: 10.1023/A:1004657817758.

[5]

G. Cohen, Auxiliary problem principle and decomposition of optimization problems, J. Optim. Theory. Appl., 32 (1980), 277-305. doi: 10.1007/BF00934554.

[6]

G. Cohen, Auxiliary problem principle extended to variational inequalities, J. Optim. Theory. Appl., 59 (1988), 325-333.

[7]

X. P. Ding, Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces, J. Optim. Theory. Appl., 146 (2010), 347-357. doi: 10.1007/s10957-010-9651-z.

[8]

K. Goebel and W. A. Kirk, "Topics in Metric Fixed Point Theory," Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990.

[9]

I. V. Konnov, Generalized monotone equilibrium problems and variational inequalities, in "Handbook of Generalized Convexity and Generalized Monotonicity " (eds. N. Hadjisavvas, S. Koml\'osi and S. Schaible), Springer-Verlag, (2005), 559-618.

[10]

A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems, J. Glob. Optim., 47 (2010), 287-292. doi: 10.1007/s10898-009-9476-1.

[11]

M. Patriksson, "Nonlinear Programming and Variational Inequality Problems: a unified approach," Kluwer, Dordrecht, 1999.

[12]

E. Zeidler, "Nonlinear Functional Analysis ans Its Applications II/B. Nonlinear Monotone Operators," Springer-Verlag, New York, 1990.

[1]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial and Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[2]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[3]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial and Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[4]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1743-1755. doi: 10.3934/dcdss.2020102

[5]

Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167

[6]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021046

[7]

Zaki Chbani, Hassan Riahi. Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 353-366. doi: 10.3934/naco.2013.3.353

[8]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[9]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[10]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial and Management Optimization, 2022, 18 (1) : 593-611. doi: 10.3934/jimo.2020170

[11]

Vyacheslav Maksimov. The method of extremal shift in control problems for evolution variational inequalities under disturbances. Evolution Equations and Control Theory, 2022, 11 (4) : 1373-1398. doi: 10.3934/eect.2021048

[12]

Bin Zhou, Hailin Sun. Two-stage stochastic variational inequalities for Cournot-Nash equilibrium with risk-averse players under uncertainty. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 521-535. doi: 10.3934/naco.2020049

[13]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[14]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[15]

Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial and Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465

[16]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial and Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[17]

Bhawna Kohli. Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3209-3221. doi: 10.3934/jimo.2020114

[18]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[19]

EL Hassene Osmani, Mounir Haddou, Naceurdine Bensalem. A new relaxation method for optimal control of semilinear elliptic variational inequalities obstacle problems. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021061

[20]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

 Impact Factor: 

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]