2011, 1(4): 691-711. doi: 10.3934/naco.2011.1.691

Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches

1. 

Department of Mathematical Science, National Chengchi University, Taipei, Taiwan, Taiwan

Received  June 2011 Revised  August 2011 Published  November 2011

In this paper, we analyze a single server queueing system $C_k/C_m/1$. We construct a general solution space of vector product-forms for steady-state probability and express it in terms of singularities and vectors of the fundamental matrix polynomial $\textbf{Q}(\omega)$. It is shown that there is a strong relation between the singularities of $\textbf{Q}(\omega)$ and the roots of the characteristic polynomial involving the Laplace transforms of the inter-arrival and service times distributions. Thus, some steady-state probabilities may be written as a linear combination of vectors derived in expression of these roots. In this paper, we focus on solving a set of equations of matrix polynomials in the case of multiple roots. As a result, we give a closed-form solution of unboundary steady-state probabilities of $C_k/C_m/1$, thereupon considerably reducing the computational complexity of solving a complicated problem in a general queueing model.
Citation: Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691
References:
[1]

R. Bellman, "Introduction to Matrix Analysis," MacGraw-Hill, London, 1960. Google Scholar

[2]

D. Bertsimas, An analytic approach to a general class of G/G/s queueing systems, Operations Research, 38 (1990), 139-155. doi: 10.1287/opre.38.1.139.  Google Scholar

[3]

F. De Terán, F. M. Dopico and J. Moro, Low rank perturbation of Weierstrass structure, SIAM J. Matrix Anal. Appl., 30 (2008), 538-547.  Google Scholar

[4]

R. V. Evans, Geometric distribution in some two-dimensional queueing systems, Operations Research, 15 (1967), 830-846. doi: 10.1287/opre.15.5.830.  Google Scholar

[5]

H. R. Gail, S. L. Hantler and B. A. Taylor, Matrix-geometric invariant measures for G/M/1 type Markov chains, Commun. Statist.-Stochastic Models, 14 (1998), 537-569.  Google Scholar

[6]

H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral analysis of M/G/1 and G/M/1 Type Markov chains, Advanced Applied Probability, 28 (1996), 114-165. doi: 10.2307/1427915.  Google Scholar

[7]

H. R. Gail, S. L. Hantler, M. Sidi and B. A. Taylor, Linear independence of root equations for M/G/1 type Markov chains, Queueing Systems, 20 (1995), 321-339. doi: 10.1007/BF01245323.  Google Scholar

[8]

I. C. Gohberg, P. Lancaster and L. Rodman, "Matrix Polynomials," Academic Press, New York, 1982.  Google Scholar

[9]

M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models," The John Hopkins University Press, 1981.  Google Scholar

[10]

W. K. Grassmann, Real eigenvalues of certain tridiagonal matrix polynomials with queueing applications, Linear Algebra and Its Applications, 342 (2002), 93-106. doi: 10.1016/S0024-3795(01)00462-1.  Google Scholar

[11]

W. K. Grassmann and J. Tavakoli, A tandem queue with movable server: an eigenvalue approach, SIAM J. Matrix Anal. Appl, 24 (2002), 465-474.  Google Scholar

[12]

W. K. Grassmann and S. Drekic, An analytical solution for a tandem queue with blocking, Queueing Systems, 36 (2000), 221-235. doi: 10.1023/A:1019139405059.  Google Scholar

[13]

R. A. Horn and C. R. Johnson, "Topics in Matrix Analysis," Cambridge University Press, 1999. Google Scholar

[14]

J. Y. Le Boudec, Steady-state probabilities of the PH/PH/1 queue, Queueing Systems, 3 (1988), 73-88. doi: 10.1007/BF01159088.  Google Scholar

[15]

H. Luh, Matrix product-form solutions of stationary probabilities in tandem queues, Journal of the Operations Research, 42 (1999), 436-656.  Google Scholar

[16]

A. Van De Liefvoort, The waiting-time distribution and its moments of the PH/PH/1 queue, Operations Research Letters, 9 (1990), 261-269. doi: 10.1016/0167-6377(90)90071-C.  Google Scholar

[17]

V. Wallace, "The Solution of Quasi Birth and Death Processes arising from Multiple Access Computer Systems," Ph. D. diss., Systems Engineering Laboratory, University of Michigan, Tech. Report N 07742-6-T, 1969. Google Scholar

show all references

References:
[1]

R. Bellman, "Introduction to Matrix Analysis," MacGraw-Hill, London, 1960. Google Scholar

[2]

D. Bertsimas, An analytic approach to a general class of G/G/s queueing systems, Operations Research, 38 (1990), 139-155. doi: 10.1287/opre.38.1.139.  Google Scholar

[3]

F. De Terán, F. M. Dopico and J. Moro, Low rank perturbation of Weierstrass structure, SIAM J. Matrix Anal. Appl., 30 (2008), 538-547.  Google Scholar

[4]

R. V. Evans, Geometric distribution in some two-dimensional queueing systems, Operations Research, 15 (1967), 830-846. doi: 10.1287/opre.15.5.830.  Google Scholar

[5]

H. R. Gail, S. L. Hantler and B. A. Taylor, Matrix-geometric invariant measures for G/M/1 type Markov chains, Commun. Statist.-Stochastic Models, 14 (1998), 537-569.  Google Scholar

[6]

H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral analysis of M/G/1 and G/M/1 Type Markov chains, Advanced Applied Probability, 28 (1996), 114-165. doi: 10.2307/1427915.  Google Scholar

[7]

H. R. Gail, S. L. Hantler, M. Sidi and B. A. Taylor, Linear independence of root equations for M/G/1 type Markov chains, Queueing Systems, 20 (1995), 321-339. doi: 10.1007/BF01245323.  Google Scholar

[8]

I. C. Gohberg, P. Lancaster and L. Rodman, "Matrix Polynomials," Academic Press, New York, 1982.  Google Scholar

[9]

M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models," The John Hopkins University Press, 1981.  Google Scholar

[10]

W. K. Grassmann, Real eigenvalues of certain tridiagonal matrix polynomials with queueing applications, Linear Algebra and Its Applications, 342 (2002), 93-106. doi: 10.1016/S0024-3795(01)00462-1.  Google Scholar

[11]

W. K. Grassmann and J. Tavakoli, A tandem queue with movable server: an eigenvalue approach, SIAM J. Matrix Anal. Appl, 24 (2002), 465-474.  Google Scholar

[12]

W. K. Grassmann and S. Drekic, An analytical solution for a tandem queue with blocking, Queueing Systems, 36 (2000), 221-235. doi: 10.1023/A:1019139405059.  Google Scholar

[13]

R. A. Horn and C. R. Johnson, "Topics in Matrix Analysis," Cambridge University Press, 1999. Google Scholar

[14]

J. Y. Le Boudec, Steady-state probabilities of the PH/PH/1 queue, Queueing Systems, 3 (1988), 73-88. doi: 10.1007/BF01159088.  Google Scholar

[15]

H. Luh, Matrix product-form solutions of stationary probabilities in tandem queues, Journal of the Operations Research, 42 (1999), 436-656.  Google Scholar

[16]

A. Van De Liefvoort, The waiting-time distribution and its moments of the PH/PH/1 queue, Operations Research Letters, 9 (1990), 261-269. doi: 10.1016/0167-6377(90)90071-C.  Google Scholar

[17]

V. Wallace, "The Solution of Quasi Birth and Death Processes arising from Multiple Access Computer Systems," Ph. D. diss., Systems Engineering Laboratory, University of Michigan, Tech. Report N 07742-6-T, 1969. Google Scholar

[1]

Sung-Seok Ko. A nonhomogeneous quasi-birth-death process approach for an $ (s, S) $ policy for a perishable inventory system with retrial demands. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1415-1433. doi: 10.3934/jimo.2019009

[2]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[3]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[4]

Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67

[5]

Hilla Behar, Alexandra Agranovich, Yoram Louzoun. Diffusion rate determines balance between extinction and proliferation in birth-death processes. Mathematical Biosciences & Engineering, 2013, 10 (3) : 523-550. doi: 10.3934/mbe.2013.10.523

[6]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[7]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[8]

Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 107-114. doi: 10.3934/dcdsb.2007.8.107

[9]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[10]

Abdon E. Choque-Rivero, Iván Area. A Favard type theorem for Hurwitz polynomials. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 529-544. doi: 10.3934/dcdsb.2019252

[11]

Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219

[12]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[13]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[14]

Dongxue Yan, Xianlong Fu. Long-time behavior of a size-structured population model with diffusion and delayed birth process. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021030

[15]

Purshottam N. Agrawal, Thakur Ashok K. Sinha, Avinash Sharma. Convergence of derivative of Szász type operators involving Charlier polynomials. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021016

[16]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[17]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[18]

Victor Meng Hwee Ong, David J. Nott, Taeryon Choi, Ajay Jasra. Flexible online multivariate regression with variational Bayes and the matrix-variate Dirichlet process. Foundations of Data Science, 2019, 1 (2) : 129-156. doi: 10.3934/fods.2019006

[19]

Sang-Gyun Youn. On the Sobolev embedding properties for compact matrix quantum groups of Kac type. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3341-3366. doi: 10.3934/cpaa.2020148

[20]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021021

 Impact Factor: 

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]